
- Like
- Digg
- Del
- Tumblr
- VKontakte
- Buffer
- Love This
- Odnoklassniki
- Meneame
- Blogger
- Amazon
- Yahoo Mail
- Gmail
- AOL
- Newsvine
- HackerNews
- Evernote
- MySpace
- Mail.ru
- Viadeo
- Line
- Comments
- Yummly
- SMS
- Viber
- Telegram
- Subscribe
- Skype
- Facebook Messenger
- Kakao
- LiveJournal
- Yammer
- Edgar
- Fintel
- Mix
- Instapaper
- Copy Link
Ng Teng Fong General Hospital, Jurong Health Services
(Photo by Omomoo (EJ Photography) / CC-BY-SA-4.0)
JurongHealth Services (JurongHealth) is one of the six public healthcare clusters under the Ministry of Health Holding (MoHH) in Singapore. JurongHealth manages an integrated healthcare hub, comprising the 700-bed Ng Teng Fong General Hospital,the 400-bed Jurong Community Hospital and the Jurong Medical Centre. The two hospitals were designed and built together from the ground-up as an integrated development to transform the way healthcare is provided to the community. Ng Teng Fong General Hospital obtained the coveted HIMSS EMRAM Stage 6 certification for its use of technology within 3 months of opening in June 2015 and achieved Stage 7 – the highest EMRAM level – in Sep 2016, a year after opening.
OpenGov sat down with Mr. Lim Soo Tong, CIO of JurongHealth to learn about the journey till date. Mr. Lim tells us how ICT was a part of the plans and designs from the earliest stages. He also talks about the future, with the focus shifting from ‘healthcare’ to ‘health’ as part of the Singapore government’s plans for a Regional Health System (RHS).
When did the planning start?
JurongHealth cluster was formed in 2009 to build and operate the 2 hospitals together with Jurong Medical Centre. JurongHealth took over the operation of the existing Alexandra hospital while concurrently launched the plan to build the new facilities.
Operating and managing Alexandra hospital enabled the organisation and its people to learn and gain relevant hands-on experience running a full-fledged operating hospital and be ready to run the new hospitals. Once the new hospitals were ready, Alexandra Hospital was handed back to the MOHH and now it is run by SengKang Health as part of the Singapore Health Services cluster.
Concurrently, while the buildings were being planned, we started architecting the overall IT solution. In IT speak, we call it the Enterprise Architecture – this is the IT blueprint much like the architectural blue print for the physical building. To have a sense of the IT solutions for the hospitals, we talked to all the stakeholders – planners, management, doctors, nurses, administrators, etc – to get a understand what they had in mind for the new hospitals. Those inputs were absolutely essential.
We had to ensure that when the new hospitals were built, it would be digitally connected from day one. For that, we had to design the network architecture, the running andlaying of structured and fibre cables, the placement and coverage of wireless access points. Once we had that done, we moved to system architecture, where we consider the IT systems we needed to run the hospitals.
Thankfully, with the wealth of experience in building and operating IT systems in public hospitals, we were able to leverage on solution standards and existing systems that were in used in other hospitals. Still, we have to cater for new processes and operational requirements. It had to be there because if you build and run a new hospital exactly like an old one, then it wouldn’t be a new hospital.
Since we had the opportunity to build 2 integrated hospitals from the ground-up, we wanted to make sure that the hospitals are equipped to meet the digital challenge. In doing so, we ensured that the whole facilities are wired up and connected digitally. We installed adequate Wi-Fi access points to provide 100% coverage of the hospital grounds.
It was important to have IT design as an integral part of the hospital building from the earliest possible stage.
We relied on the schematic building diagrams to decide on the exact locations of the wireless access points to get full Wi-Fi coverage in all the areas in and around the buildings. You have to get it right the first time as any rework after the building is up will be cumbersome and costly.
What is really challengingwas going to each floor and figuring out what we need right down to each bed. We have planned to put a a patient information board at each bedside, not a physical computer but a connection to a computer system that can provide the information that the doctors and nurses need when they see the patient, such as patient’s name, the assigned doctor, any drug allergies, language spoken, dietary requirements and other information that helps in the delivery of safe care.
In most hospitals, this was manually compiled. Every time a new patient come in, a nurse would have to compile and transcribe all that information for display at the bedside. It was tedious, time-consuming and there was the possibility of transcription errors creeping in.
At JurongHealth, we are the first public hospitalto put in a computerised patient information board (PIB) at each bedside. We installed digital tablets at each bedside and pumped the relevant information into the them from the Patient Information Management System.
If the patient is transferred from Intensive Care ward to General ward, the information follows saving the need to recompile and rehash the data. To improve the care delivery process, we also utilised RFID tags to track patients. So, we don’t even need to tell the system that the patient has been transferred. Once the reader detects that the patient has arrived at the new ward, the correct information will be displayed automatically at the PIB.
All this planning was done at the early stage when users’ requirements are gathered. If a system is built in isolation by the IT people without consultation withthe users, then you can be sure that adoption will be very low.
During the early planning stages, we visited renowed hospitals in the US, South Korea, Japan and Thailand to learn from the best. It paid off as we were able to adopt and adapt good features in our hospitals where it made sense.
What was the next stage?
Once the buildings were sufficiently built up and it was safe to get into the building, we put on personal protection equipment such as hard hats and safety boots and went inside the incomplete building frequently to see the actual physical layout for ourselves. Before that, we could only work with mock-ups of the wards etc. We were able to make sure that things were exactly like what we had planned for. We checked the smallest of details.
The TOP (Temporary Occupation Permit) for the building was obtained in September 2014. With this milestone, the rush of activities began. Everything from beds to desks to dustbins to computers were being brought in a frenzy pace. We went around checking for defects, making sure that everything worked from electrical power points to LAN points and get them ready for commisionning.

How did you deal with training users?
We started on-site dress rehearsals soon as it was physically safe for us to do so. You can do as many table-top exercises as you like, but nothing beats doing it on site, with actual people doing the actual thing. We even had staff to volunteer as patients.
From a system perspective also, we had to pay special attention to user training. We had two new hospitals with a quite a few new systems and new processes. To complicate matters, we had a lot of new staff that came on board. so we had to carefully plan and coordinate the training so that users were trained at the appropriate time – cannot be too early, else they will forget, nor too late as they need to be able to use the systems when the hospitals open. So, we had new hospitals, new staff, new processes and new systems all at the same time!!
We developed extensive training programs to ensure all staff were appropriately and adequately trained. We adopted the train-the-trainer approach. We identified a core group of people and trained them and relied on them to train the rest of the users.
We went through a series of technical walk-throughs supplemented with integrated workflow trainings and then table-top exercises followed by dress rehearsals cumulating in full-dress rehearsals..
The key challenge was testing the systems in an integrated manner together with the workflows and processes. We cannot test all these in isolation. The latter is easy. We conducted massive amount of integration tests, going through many rounds, many iterations. Systems also had to be integrated with the common, shared systems across all the healthcare clusters and also government agencies.
Everything had to work on day one, when the hospital opened. The dress rehearsals culminated in two full dress rehearsals. You could do rehearsals just pertaining to your area of work. Each department might do its work perfectly well in silo. But if you don’t test how everything is going to work when brought together, you stand the risk of missing some steps or connection. And if that happened on the actual day of opening, everything could collapse. The full dress rehearsal ensures that everything works together harmoniously as intended to be.
We ran through testing using real-life scenarios, or what we call use cases, where a patient comes in and gett through all the various touchpoints before leaving the hospitals. We did this a few times, until everyone was satisfied that they knew exactly what to do.
Can you tell us about the opening of the hospital and the progress from there on?
We opened the doors of the Ng Teng Fong General Hospital on 30th June, 2015. The great thing was that it was a non-event on the opening day. It meant that we had done our job really well. Everything ran more or less as it was supposed to.
We learned a lot over the course of our journey and in the process, won some prestigious awards such as the Project Management Institute’s (PMI) Project of the Year Award and the HIMSS Elsevier Award, recognising our effort and achievements.
It’s been 16 months now since we opened the hospitals and operations have stabilised. We are now ramping up business activities and so far have successfully kept up with the increased in volume of business.
The hospital is not yet operating at full capacity. We are opening up more clinics and commissioning more beds in phases to meet demands. (I don’t want to commit)
What are the plans and areas of focus for the future?
We are preparing for further expansion, adding more rooms, more clinics. My responsibility as the CIO is to ensure that when business expands and volumes grow, the IT infrastructure can take on the additional load and pressure.
If you look at the longer term, 3-5 years ahead, we have to align with public healthcare IT strategies and guided by the national Health IT Master Plan (HITMAP) to achieve Singapore’s Healthcare 2020 vision of accessible, quality and affordable care for our population. What we are concentrating on is the rollout of the ‘Regional Health System’ (RHS).
The emphasis is not just on healthcare anymore. It is on ‘health’. Healthcare is caring for people when they are sick. Health is the state of a person’s physical well-being. If you are healthy, you don’t need to come to the hospital. RHS aims to keep the populace out of the hospital to the maximum extent possible, for as long as we can.
For example, we want to do health screenings pro-actively, before you are hit by something serious. It is all about population health, which is an approach that aims to improve the health of the entire population.
What role would IT play in the RHS?
There are specific systems that we can use to engage the population on health. Imagine doing health screenings for the entire community and providing the necessary follow up care. You are no longer just catering to patients’ requirements. You are now looking after health of the population before they become patients.
The IT systems need to be able to do that and a feedback loop into our existing systems. The challenge is dealing with the broadening of coverage and generation of massive volumes of data. It will be an extension of the mainstream medical record system and has to be connected.
Looking after a person’s health is no longer a single organisation’s responsibility. Hospitals, polyclinics, GPs, nursing homes, Voluntary Welfare Organisations all come into play – hence the Regional Health System. And the more information we have on you, the better we can look after you and attempt to keep you healthy.
The challenge is how to bring all these pieces of data together. We need to extend the National Electronic Health Record (NEHR) to capture health records of non-patients. We need to get all the data in from the connected sources – screening systems, GPs and even private hospitals.
Big data analytics has a vital role of equipping care providers with better knowledge for better decision making, so that they can provide value care. We have started working on all this already and we will get all the pieces of the jigsaw in place.
Our previous reporting on JurongHealth Services:
JurongHealth Services CIO discusses the fully Integrated EMR Suite, Hospital ICT Systems and achieving HIMSS EMRAM Stage 6
A day in the life of a CIO
- Like
- Digg
- Del
- Tumblr
- VKontakte
- Buffer
- Love This
- Odnoklassniki
- Meneame
- Blogger
- Amazon
- Yahoo Mail
- Gmail
- AOL
- Newsvine
- HackerNews
- Evernote
- MySpace
- Mail.ru
- Viadeo
- Line
- Comments
- Yummly
- SMS
- Viber
- Telegram
- Subscribe
- Skype
- Facebook Messenger
- Kakao
- LiveJournal
- Yammer
- Edgar
- Fintel
- Mix
- Instapaper
- Copy Link
The National Heart Centre Singapore (NHCS) has been on a remarkable journey of advancements in cardiovascular research, particularly in the prevention, diagnosis, and management of heart diseases. With the global rise in heart disease cases, NHCS’s dedication to scientific knowledge and innovation has become increasingly vital.
Since its establishment in 2014, the National Heart Research Institute of Singapore (NHRIS) at NHCS has positioned itself as a leading institution for cardiovascular research in the region. Over the years, NHRIS has achieved significant breakthroughs that hold the potential to transform patient outcomes.
NHRIS’s research encompasses a wide spectrum of disciplines within cardiovascular medicine, spanning basic, translational, and clinical research. Notable achievements include Heart Stem Cell Therapy and Preventing Fibrosis.
By studying patients’ heart stem cells, researchers have uncovered new treatments for heart diseases. For example, a breakthrough treatment using myeloperoxidase has been discovered for hypertrophic cardiomyopathy, an inherited condition characterised by thickening of the heart muscle.
Also, through the study of heart tissue from patients undergoing surgery, NHRIS researchers have identified a potential treatment involving interleukin-11 antibodies to prevent inflammation and fibrosis in the heart and other organs. This innovative therapy has the potential to improve outcomes for patients with various inflammatory and fibrotic conditions.
The next phase of NHCS’s research efforts over the coming years will focus on three key areas:
- Discovery of New Treatments: Ongoing research aims to develop new treatments for heart diseases, enhancing patient outcomes.
- Utilising Artificial Intelligence: NHCS is at the forefront of integrating artificial intelligence (AI) into cardiovascular care. AI holds promise in predicting, diagnosing, and monitoring heart diseases with greater precision and efficiency. The APOLLO study, initiated in 2021, is building an AI-driven national platform for coronary angiography analysis, offering detailed reports on patients’ conditions and future cardiovascular disease risk.
- Clinical Trials and Population Health Studies: NHCS’s research agenda includes conducting clinical trials and population health studies to prevent the onset of heart disease.
NHRIS is pioneering innovative approaches, including Visualising Energy Pathways and AI Applications.
Disturbances in energy-producing pathways in heart muscle contribute to heart conditions as Hyperpolarised magnetic resonance spectroscopy, a novel imaging technology available only in a few centres worldwide, allows the measurement of these metabolic pathways, potentially leading to new treatments for heart disease.
On the other hand, AI accelerates research in the field of cardiovascular science. By processing vast datasets and identifying patterns, AI systems assist researchers in identifying novel treatment methods, risk factors, and disease mechanisms. These insights lead to breakthroughs in treatment and prevention methods, advancing the overall understanding of cardiovascular diseases.
With this, NHCS is leveraging AI to detect, predict, and diagnose heart diseases by analysing complex imaging data. AI provides clinicians with invaluable insights, enabling personalised care and early intervention.
In addition, NHCS collaborates with other heart research institutes and hospitals through CADENCE (Cardiovascular Disease National Collaborative Enterprise), a national platform that combines heart research capabilities in data science, clinical trials, and AI. This collaboration ensures a collective effort to advance cardiovascular research and improve patient care.
NHCS’s groundbreaking research initiatives in AI applications, clinical trials, and collaborative efforts underscore its commitment to enhancing patient care. As NHCS continues its pursuit of research excellence, its impact extends beyond Singapore, benefiting individuals across the region and around the world. The institution is poised to make substantial progress in preventing, diagnosing, and managing cardiovascular diseases, ultimately reshaping the future of cardiovascular medicine.
- Like
- Digg
- Del
- Tumblr
- VKontakte
- Buffer
- Love This
- Odnoklassniki
- Meneame
- Blogger
- Amazon
- Yahoo Mail
- Gmail
- AOL
- Newsvine
- HackerNews
- Evernote
- MySpace
- Mail.ru
- Viadeo
- Line
- Comments
- Yummly
- SMS
- Viber
- Telegram
- Subscribe
- Skype
- Facebook Messenger
- Kakao
- LiveJournal
- Yammer
- Edgar
- Fintel
- Mix
- Instapaper
- Copy Link
An innovative microscope developed by a research team at the Hong Kong University of Science and Technology (HKUST) is poised to revolutionise the field of cancer surgery. This cutting-edge microscope, powered by artificial intelligence, has the potential to transform the way surgeons detect and remove cancerous tissue during operations, thereby sparing patients from the distressing prospect of secondary surgeries.
Lung cancer, a leading cause of cancer-related deaths worldwide, has been a focal point for this ground-breaking research. Professor Terence Wong Tsz-Wai, the principal investigator of the project and an assistant professor in the Department of Chemical and Biological Engineering at HKUST, highlights the urgency of their work.

He notes that between 10% to 20% of lung cancer surgery cases require patients to return for a second operation due to incomplete removal of cancer cells. This uncertainty has long plagued surgeons, who often struggle to determine if they’ve successfully excised all cancerous tissue during the initial surgery.
The HKUST research team, led by Prof. Wong, is eager to see their innovation make a significant impact. Collaborating with five hospitals, including Queen Mary Hospital, Prince of Wales Hospital in Hong Kong, and three mainland Chinese hospitals, they have embarked on a large-scale clinical trial involving around 1,000 patient tissue samples. The goal is to have the microscope officially in service locally by 2024 and on the mainland by 2025.
The current methods for imaging cancer tissue offer either accuracy with lengthy delays or speed at the cost of accuracy. Traditional microscopy, considered the gold standard, is highly accurate but can take up to a week to generate results. This means patients must endure a week of anxious waiting to know the outcome of their surgery. In cases where the operation is deemed unsuccessful, patients face the daunting prospect of a second surgery to remove the remaining cancer cells.
The alternative, known as the frozen section, provides quicker results within 30 minutes but sacrifices accuracy, with an estimated accuracy rate of only around 70%.
The HKUST research team’s breakthrough technology, termed “Computational High-throughput Autofluorescence Microscopy by Pattern Illumination” (CHAMP), has changed this landscape. It can detect cancer cells in just three minutes with an accuracy rate exceeding 90%, rivalling the gold standard but with significantly faster results.
CHAMP employs ultraviolet (UV) light excitation to image tissue surfaces at a specific wavelength. Subsequently, a deep learning algorithm transforms the obtained greyscale image into a histological image, facilitating instant interpretation by doctors. This real-time feedback empowers surgeons to ensure they have completely removed all cancer cells during the operation.
CHAMP’s potential has garnered local, regional, and international acclaim, leading to the establishment of a start-up supported by HKUST and funded by the Technology Start-up Support Scheme for Universities (TSSSU). Beyond developing the technology, the company plans to manufacture CHAMP microscopes for medical institutions in Hong Kong, mainland China, and overseas markets.
This endeavour represents the culmination of years of meticulous research, starting with Prof. Wong’s PhD training at Washington University in St. Louis and the California Institute of Technology. During this period, Prof. Wong, under the guidance of biomedical imaging expert Prof. Lihong Wang, developed a microscope capable of analysing breast cancer tumours with an accuracy rate comparable to the gold standard but with results in just one to two hours.
The shift in focus to lung cancer occurred when a pulmonologist approached Prof. Wong, recognising the potential of the technology to enhance precision during lung cancer surgery. This decision led to the development of CHAMP microscopy, which is approximately 100 times faster than Prof. Wong’s earlier work during his PhD training. This breakthrough makes CHAMP clinically useful and impactful.
The applications of CHAMP extend beyond lung and breast cancers. The research team is conducting tests on smaller scales for conditions such as liver, colorectal, kidney, and skin cancers, as well as prostate gland conditions. Prof. Wong is confident that CHAMP will elevate medical imaging and diagnosis to new heights, benefiting not only Hong Kong hospitals but also healthcare institutions nationwide and abroad. This pioneering technology represents a beacon of hope for cancer patients, offering the promise of quicker, more accurate surgeries and improved outcomes.
OpenGov Asia reported that the Hong Kong Science and Technology Parks Corporation (HKSTP) spearheaded an initiative aimed at promoting innovation and technology in the biotech sector, showcasing Hong Kong’s pioneering advancements and entrepreneurial spirit.
This initiative was part of the “Think Business, Think Hong Kong” event organised by the Hong Kong Trade Development Council (HKTDC) in Paris recently. The event was a platform to underscore the potential for cross-border collaboration between Hong Kong and France in the field of biotechnology and innovation.
- Like
- Digg
- Del
- Tumblr
- VKontakte
- Buffer
- Love This
- Odnoklassniki
- Meneame
- Blogger
- Amazon
- Yahoo Mail
- Gmail
- AOL
- Newsvine
- HackerNews
- Evernote
- MySpace
- Mail.ru
- Viadeo
- Line
- Comments
- Yummly
- SMS
- Viber
- Telegram
- Subscribe
- Skype
- Facebook Messenger
- Kakao
- LiveJournal
- Yammer
- Edgar
- Fintel
- Mix
- Instapaper
- Copy Link
The government has unveiled the Intelligent Grievance Monitoring System (IGMS) 2.0 Public Grievance Portal and Automated Analysis in the Tree Dashboard portal under the Department of Administrative Reforms and Public Grievances (DARPG). It was unveiled by Jitendra Singh, the Union Minister of State (Independent Charge) for Science and Technology.
The IGMS 2.0 Dashboard was developed by the Indian Institute of Technology, Kanpur (IIT-Kanpur) as part of an agreement with the DARPG through a memorandum of understanding (MoU) signed in 2021. It enhances DARPG’s Centralised Public Grievance Redress and Monitoring System Information Systems (CPGRAMS) by integrating artificial intelligence (AI) capabilities. CPGRAMS is an online platform available to citizens round-the-clock to lodge their grievances to the public authorities on any subject related to service delivery.

The dashboard offers instant tabular analyses of both grievances filed and disposed of. It provides data categorised by state and district for grievances filed, and it also offers Ministry-wise data. Additionally, the dashboard can help officials identify the root causes of grievances.
The CPGRAMS portal receives an increasingly high caseload of issues raised by the general public. Given the public’s expectations for the timely resolution of their grievances, the portal receives approximately 2 million grievances annually.
Due to the substantial volume of grievances received, the manual classification and monitoring of cases is not feasible. The IGMS portal will assist the DARPG in generating draft letters for specific schemes or ministries. This automation expedites the grievance redressal process carried out by the respective ministries and departments involved.
According to Minister Singh, the Prime Minister has repeatedly emphasised the significance of grievance redressal as a crucial element to keep the government accountable and promote citizen-centric governance. In alignment with this vision, a more robust human interface mechanism has been introduced, which includes counselling services provided after the resolution of grievances.
The Minister praised DARPG for ensuring that the CPGRAMS portal is accessible in 22 Scheduled languages, in addition to English, ensuring that the benefits of the portal are accessible to the common man. He also emphasised the importance of integrating state public grievance (PG) portals and other government portals with CPGRAMS for more effective and streamlined grievance redressal processes.
He claimed that thanks to the reforms implemented by DARPG in the CPGRAMS, the average time it takes for central ministries and departments to resolve public grievances has decreased. There has been a decline of almost 50% in the average disposal time for central ministries and departments from 32 days in 2021 to 18 days in 2023.
Minister Singh also launched the Swachhata Special Campaign 3.0 and unveiled the Precedent Book (e-book) developed by the department. He praised the DARPG for achieving the transition to a fully paperless office, where all communication is conducted through the eOffice portal.
During the past two Swachhata campaigns, an impressive 9 million square feet of prime office space has been successfully cleared and repurposed for productive use. Additionally, 456,000 public grievances have been effectively redressed, and 8,998 references from Members of Parliament (MPs) have been addressed. The Swachhata campaign has also played a pivotal role in promoting an eOffice work culture within the government, resulting in over 90% of file work being transitioned to an online format.
- Like
- Digg
- Del
- Tumblr
- VKontakte
- Buffer
- Love This
- Odnoklassniki
- Meneame
- Blogger
- Amazon
- Yahoo Mail
- Gmail
- AOL
- Newsvine
- HackerNews
- Evernote
- MySpace
- Mail.ru
- Viadeo
- Line
- Comments
- Yummly
- SMS
- Viber
- Telegram
- Subscribe
- Skype
- Facebook Messenger
- Kakao
- LiveJournal
- Yammer
- Edgar
- Fintel
- Mix
- Instapaper
- Copy Link
Public transportation is a crucial service for enhancing the general satisfaction the government provides. In light of this, the Indonesian government has established high-speed rail infrastructure for Jakarta-Bandung mobility.
The Ministry of Communication and Information Technology (Kominfo) fully supports the Jakarta-Bandung High-Speed Train (KCJB) WHOOSH operation. Kominfo’s Budi Arie Setiadi expressed continuous monitoring for the availability and reliability of digital connectivity, particularly telecommunications networks along the first high-speed rail route in Indonesia.
“We, along with the telecommunications ecosystem, conducted tests. Kominfo is tasked with supporting signal-related issues. We assessed the signal quality along our journey and found that we could use devices and frequencies for communication,” he explained.
Minister Budi Arie emphasised that KCJB, as a technological leap for Indonesia’s progress, needs full support from the latest telecommunications technology. With advancements in transportation paralleled by digital technology, it will undoubtedly facilitate more efficient access for the public.
“This is a technological leap for Indonesia’s progress. Because this train is solid, the tracks are seamless, and the signal is robust. Our duty and responsibility are to support it,” he added.
Kominfo assured that the quality of telecommunications services would sustain the overall KCJB service. According to them, the journey from KCJB Halim Station to KCJB Padalarang Station and vice versa proceeded smoothly.
“Overall, the management and governance of the high-speed train are excellent,” he noted.
At this trial event, Minister Budi Arie Setiadi was joined by Deputy Minister of Kominfo Nezar Patria and senior officials from the Ministry of Communication and Information Technology. Minister Budi Arie encouraged the telecommunications service provider network to oversee and guarantee the quality of the network.
Ismail, the Director-General of Resources and Equipment of Posts and Information Technology at Kominfo, explained that the test conducted by Kominfo officials and telecommunications service providers is part of the initial process to support digital connectivity for KCJB. Kominfo has prepared radio frequency spectra for quality telecommunications signal transmission.
“And, fortunately, the signal used, or the frequency used, is now in collaboration with one of the biggest telecommunication companies in Indonesia. This cooperation began about two or three years ago. And, thank God, we witnessed today that the train’s communication system worked well. No signal interruptions,” he stated.
Director-General Ismail states that 5G telecommunication networks are available at Halim KCJB Station and Padalarang KCJB Station. This network supports connectivity and signifies that Indonesia is ready for full-scale and comprehensive digital transformation, even in minor details.
“For these two station locations here (Halim) and in Padalarang, the 5G signal has already been covered. Passengers at these stations can now enjoy 5G services. The remaining task is to improve the signal for passengers during the journey. So, from Jakarta to Padalarang and Bandung, we hope there will be no frequency or cellular signal interruptions,” he explained.
Next, Henry Mulya Syam, the President and Director of the Telecommunication company, stated that they would address several remaining telecommunications service challenges at various points along the KCJB route.
“There are several sites to be added, both outdoor and on the KCJB panel. We have conducted evaluations, so hopefully, within 6 to 9 months, because new towers need to be built,” he clarified.
Previously, together with President Joko Widodo and several members of the Indonesia Maju Cabinet, Minister of Communication and Information Technology Budi Arie Setiadi conducted a test journey on the KCJB from Halim Station, East Jakarta, to Padalarang Station, West Bandung Regency. The KCJB, WHOOSH, travels 350 kilometres per hour, making it the first high-speed train in Indonesia and Southeast Asia.
- Like
- Digg
- Del
- Tumblr
- VKontakte
- Buffer
- Love This
- Odnoklassniki
- Meneame
- Blogger
- Amazon
- Yahoo Mail
- Gmail
- AOL
- Newsvine
- HackerNews
- Evernote
- MySpace
- Mail.ru
- Viadeo
- Line
- Comments
- Yummly
- SMS
- Viber
- Telegram
- Subscribe
- Skype
- Facebook Messenger
- Kakao
- LiveJournal
- Yammer
- Edgar
- Fintel
- Mix
- Instapaper
- Copy Link
Oak Ridge National Laboratory (ORNL) has introduced the Centre for AI Security Research (CAISER) to confront the existing threats stemming from the widespread adoption of artificial intelligence by governments and industries worldwide. This move concedes the potential benefits of AI in data processing, operational streamlining, and decision-making while acknowledging the associated security challenges.
ORNL and CAISER will collaborate with federal agencies such as the Air Force Research Laboratory’s Information Directorate and the Department of Homeland Security Science and Technology Directorate. Together, they will conduct a comprehensive scientific analysis to assess the vulnerabilities, threats, and risks associated with emerging and advanced artificial intelligence, addressing concerns ranging from individual privacy to international security.
Susan Hubbard, Deputy for Science and Technology at ORNL, emphasised this endeavour, “Understanding AI vulnerabilities and risks represents one of the most significant scientific challenges of our time. ORNL is at the forefront of advancing AI to tackle critical scientific issues for the Department of Energy, and we are confident that our laboratory can assist DOE and other federal partners in addressing crucial AI security questions, all while providing valuable insights to policymakers and the general public.”
CAISER represents an expansion of ORNL’s ongoing Artificial Intelligence for Science and National Security initiative, which leverages the laboratory’s unique capabilities, infrastructure, and data to accelerate scientific advancements.
Prasanna Balaprakash, Director of AI Programmes at ORNL, emphasised that AI technologies substantially benefit the public and government. CAISER aims to apply the lab’s expertise to comprehensively understand threats and ensure AI’s safe and secure utilisation.
Previous research has highlighted vulnerabilities in AI systems, including the potential for adversarial attacks that can corrupt AI models, manipulate output, or deceive detection algorithms. Additionally, generative AI technologies can generate convincing deepfake content.
Edmon Begoli, Head of ORNL’s Advanced Intelligent Systems section and CAISER’s founding director emphasised the importance of addressing AI vulnerabilities. CAISER aims to pioneer AI security research, developing strategies and solutions to mitigate emerging risks.
CAISER’s research endeavours will provide federal partners with a science-based understanding of AI risks and effective mitigation strategies, ensuring the reliability and resilience of AI tools against adversarial threats.
They provide educational outreach and disseminate information to inform the public, policymakers, and the national security community.
CAISER’s initial focus revolves around four national security domains aligned with ORNL’s strengths: AI for cybersecurity, biometrics, geospatial intelligence, and nuclear nonproliferation. Collaboration with national security and industry partners is critical to these efforts.
Col Fred Garcia, Director of the Air Force Research Laboratory (AFRL) Information Directorate, expressed confidence in CAISER’s role in studying AI vulnerabilities and safeguarding against potential threats in an AI-driven world.
Moreover, as ORNL celebrates its 80th anniversary, CAISER embodies the laboratory’s commitment to solving complex challenges, advancing emerging scientific fields, and making a global impact. With its established cybersecurity and AI research programmes, ORNL is well-suited to pioneer AI security research through CAISER.
Moe Khaleel, Associated Laboratory Director for National Security Sciences at ORNL, highlighted the laboratory’s legacy of scientific discovery in various fields and emphasised CAISER’s role in scientifically observing, analysing and evaluating AI models to meet national security needs.
- Like
- Digg
- Del
- Tumblr
- VKontakte
- Buffer
- Love This
- Odnoklassniki
- Meneame
- Blogger
- Amazon
- Yahoo Mail
- Gmail
- AOL
- Newsvine
- HackerNews
- Evernote
- MySpace
- Mail.ru
- Viadeo
- Line
- Comments
- Yummly
- SMS
- Viber
- Telegram
- Subscribe
- Skype
- Facebook Messenger
- Kakao
- LiveJournal
- Yammer
- Edgar
- Fintel
- Mix
- Instapaper
- Copy Link
The Digital Government Development Agency (DGA) recently updated Thailand’s digital government progress to enhance nationwide digital services. They plan to expand their government application for all age groups, with over 400 million digital service usages, excluding infrastructure services.
The estimated economic value exceeds 8 billion baht. Their strategy focuses on more accessible, faster, and transparent access to government services, fostering a Smart Connector role. This enhances digital government levels, promoting a Smart Nation and Smart Life for Thai citizens, aligning with their quality of life improvement goals. Dr Supot Tiarawut, Director of DGA, presented these 2023 mission results, emphasising their commitment to effectively serving citizens, businesses, and government entities.
At the Government-to-Citizens (G2C) level, the DGA has linked over 112 government services via the government application, functioning as a comprehensive government SUPER APP. This app integrates services from various government agencies to address citizens’ needs effectively. It boasts more than 112 services, with over 7.5 million cumulative users and 607,041 downloads. This offers citizens a convenient single-channel solution for accessing government services, streamlining the process for all age groups and reducing the complexities associated with traditional government service usage. The plan for 2024 involves introducing critical services such as personal land tax checks, insurance information (Life/Non-Life), and interest payment services (pawning).
The Government Open Data Centre elevation aims to provide high-quality open datasets that cater to the populace’s needs and serve software developers, enabling their appropriate and optimal utilisation. This strategic move aims to enhance future competitiveness. Currently, there are 10,226 open datasets with 3,871,796 users.
The plan for 2024 includes boosting information exchange and utilisation among the public, private, and international sectors. Additionally, the Digital Transcript project, which offers digital transcripts, enhances convenience for students, reduces financial burdens, eases document verification processes for staff, and trims university expenditure on document issuance. This initiative has already produced over 1 million cards across 82 universities nationwide.
The DGA promotes transparency and public engagement through the central legal system, where the government seeks general feedback on law drafts and assesses their effectiveness. Over 1,000 regulations have been open for public comment, with 191,683 submissions. Additionally, the Tax Pai Pai system, providing government expenditure data, enhances public participation in monitoring corruption, with 16,187,604 projects disclosed.
In the G2B sector, the Biz Portal streamlines government-business interactions, benefiting SMEs. Over 124 government licenses have been obtained by 15,881 active operators, simplifying business startup processes. The Digital Entrepreneur Centre for Government Agencies (Me-D e-Marketplace) lists 595 digital technology entrepreneurs from various agencies for government procurement.
In G2G collaboration, the DGA enhances data sharing through the Government Data Exchange Centre (GDX), linking 13 agencies through 74 service data APIs with 133.44 million data exchanges. The Digital Government Personnel Development Institute (TDGA) has already benefited over 1,942,443 individuals, with plans to expand to local-level staff in 2024, offering region-specific digital courses and on-site training through the system with over 300,000 learners.
The Digital Local System is a crucial initiative, a cornerstone of local-level digital government adoption. It streamlines the administration and services of 659 Local Administrative Organisations, incorporating systems from 117 agencies. This enhances service provision, making it accessible and convenient nationwide, ultimately improving people’s quality of life in various regions.
During a visit to Bang Saray Subdistrict Municipality in Chonburi Province, the DGA observed the successful Digital Local System pilot project, which enables convenient access to services, reducing the need for physical visits to government offices and improving efficiency and cost-effectiveness. The initiative also established B-Buddy Bang Saray, a network of volunteers aiding those unfamiliar with digital systems to promote inclusivity.
In his closing remarks, Dr Supot highlighted these projects as examples of the DGA’s role in advancing Thailand towards becoming a Smart Nation, enhancing citizens’ quality of life. These efforts have consistently improved Thailand’s digital government development rankings assessed by the United Nations.
- Like
- Digg
- Del
- Tumblr
- VKontakte
- Buffer
- Love This
- Odnoklassniki
- Meneame
- Blogger
- Amazon
- Yahoo Mail
- Gmail
- AOL
- Newsvine
- HackerNews
- Evernote
- MySpace
- Mail.ru
- Viadeo
- Line
- Comments
- Yummly
- SMS
- Viber
- Telegram
- Subscribe
- Skype
- Facebook Messenger
- Kakao
- LiveJournal
- Yammer
- Edgar
- Fintel
- Mix
- Instapaper
- Copy Link
Government agencies in New Zealand are entering the digital age by launching their new Government Electronic Tender Service (GETS) and All-of-Government (AoG) collaborative contracts dashboards. These innovative digital tools are set to revolutionise procurement practices, offering unprecedented insights into spending patterns and benchmarking features.
The GETS and AoG dashboards have been developed with a digital-first approach to provide agencies with comprehensive insights into their procurement practices. One of the key goals of these dashboards is to enhance transparency in government spending, allowing agencies to make more informed decisions and facilitating strategic, intelligence-led procurement processes.
The GETS and AoG dashboards leverage cutting-edge data visualisation technologies to present complex procurement data in a clear and accessible manner. Interactive charts, graphs, and visual representations make it easier for users to gain insights from the data, promoting better decision-making.
Early agency feedback has been positive, with many highlighting the value of the benchmarking features. These features enable agencies to compare their procurement practices with others, fostering healthy competition and sharing best practices. This benchmarking capability not only improves transparency but also helps agencies identify areas for improvement.
One of the core objectives of this initiative is to make the dashboards even more user-friendly and comprehensive in future versions. The development team aims to streamline the user experience, making it easier for agencies to access and interpret the available data. Additionally, the dashboards will be expanded to include data from all participating agencies, further enhancing procurement data transparency.
In the pursuit of transparency and efficiency, government agencies actively seek input from users and stakeholders. They have invited agencies and individuals to share their suggestions and ideas on improving the dashboards. This collaborative approach ensures that the tools meet the needs of agencies and the broader public, fostering a culture of continuous improvement.
Moreover, this new GETS commits to making the dashboards more user-friendly and reflects a user-centric design approach. Agencies will likely collaborate with UX designers to ensure the dashboards are intuitive and tailored to users’ needs, ultimately improving the overall user experience.
Implementing a user-friendly UX is not only making a profound statement about the New Zealand government’s commitment to improving public services but also acknowledging that the success of these dashboards hinges on their adoption and utilisation by a diverse user base. In government procurement, where various stakeholders, including procurement officers, administrators, and policymakers, interact with these tools, catering to their varied needs is paramount.
It will also employ artificial intelligence (AI) to provide intelligent insights. With the emergence of technology, the roles of AI algorithms can be analysed deeper and more accurately. It can generate historical spending data and suggest trends, helping agencies identify cost-saving opportunities and optimise procurement strategies.
The GETS and AoG dashboards represent a significant milestone as government agencies continue their digital transformation journey. These tools provide a glimpse into the future of procurement practices, where data-driven decisions and transparency take centre stage. With ongoing efforts to improve user-friendliness and expand data coverage, these dashboards will play a pivotal role in shaping the procurement landscape for years to come.
In the era of digital government, the commitment to harnessing technology for improved governance and public service is evident. As agencies embrace innovative digital tools, the government sets a precedent for other sectors, fostering a culture of digital innovation and data-driven decision-making for the New Zealand government.