We are creating some awesome events for you. Kindly bear with us.

HKU Team Develops Novel Wearable Device

Advanced devices developed by a mechanical engineering team at the University of Hong Kong (HKU) has proven to be useful for detecting potential stroke patients and helping machines mimic human brain functions.

In a collaboration with Nanjing University, Dr Paddy K.L. Chan, Associate Professor at the Department of Mechanical Engineering, developed a novel wearable electrocardiogram (ECG) sensor by integrating flexible, ultra-thin organic semiconductors into a flexible polyimide substrate.

Powered by a button battery, the sensor has outstanding signal amplification properties with a gain larger than 10,000, which allows it to detect electrophysiological signal, or f-wave with a frequency of 357 beats per minute (BPM), which indicates atrial fibrillation.

Conventional portable ECG sensors cannot easily detect the f-wave due to its weak amplitude. Atrial fibrillation is the most common arrhythmia associated with the increased risk of stroke or heart failure. The high signal detection capability stems from the ultralow subthreshold swing (SS) in the organic field-effect transistors (OFETs).

Photo The novel wearable ECG sensor made by integrating flexible ultra thin organic semiconductors into a flexible polyimide substrate Source HKU Press Release

The study showed the ECG sensor managed to pick up unusual signals from patients with atrial fibrillation, while conventional electrodes could not.

He noted that people wearing the new sensors can also enjoy the freedom of movement, run around or even take a shower if they want, not being attached to a machine. A breakthrough in application with the use of a new device structure has been seen. The finding has been published in Nature Communications, in the article entitled “Sub-thermionic, ultra-high-gain organic transistors and circuits.”

Dr Chan’s previous breakthrough in developing the staggered structure monolayer OFETs, the material used in the latest experiment, was published in Advanced Materials. A US patent was also filed for the innovation. In the latest work, his team has advanced the application of the monolayer OFETs to flexible substrates for wearable electronic applications.

He said the subthreshold swing is an important parameter in transistor or inverter operation as it implies how much voltage change is needed to turn the device from an “off” state to an “on” state. The team’s devices provide a record low subthreshold swing device which ensures low operating power and high sensitivity.

The team also succeeded in adding ‘memory’ or collected signal, information to an organic transistor, which paves the way for advanced machine learning to mimic human brain functions.

The work has been published in Nature Communications, in another article entitled “Mimicking associative learning using an ion-trapping non-volatile synaptic organic electrochemical transistor”.

The team’s paper explains the physics behind how information can be stored in a device. It sets the stage for the next generation of computer learning through the enhancement of the ‘learning function’ of a device. For example, the memory transistors can be integrated with optical sensors for image processing and computation at the same time. The memory transistors are building blocks for the artificial neural network that can perform signal recognition or learn like a human brain, he said.

The team successfully added the “ion retainer” polytetrahydrofuran (PTHF) into a conductive organic polymer PEDOT:TOS. The PTHF can significantly slow down the move in-and-out of the ions in the PEDOT:TOS channel layer and maintain them at the desired conductance state. Multi-conductance levels, which can be considered as “memory levels”, were achieved. The experiment was held jointly with Northwestern University.

There is vast room for research in this area of human-machine interface, with unthinkable benefits for mankind. “There are unlimited possibilities when it comes to the applications of such interface,” added Dr Chan. In the meantime, however, he said that his focus would be on developing sophisticated circuits using advanced materials.

PARTNER

CTC Global Singapore, a premier end-to-end IT solutions provider, is a fully owned subsidiary of ITOCHU Techno-Solutions Corporation (CTC) and ITOCHU Corporation.

Since 1972, CTC has established itself as one of the country’s top IT solutions providers. With 50 years of experience, headed by an experienced management team and staffed by over 200 qualified IT professionals, we support organizations with integrated IT solutions expertise in Autonomous IT, Cyber Security, Digital Transformation, Enterprise Cloud Infrastructure, Workplace Modernization and Professional Services.

Well-known for our strengths in system integration and consultation, CTC Global proves to be the preferred IT outsourcing destination for organizations all over Singapore today.

PARTNER

Planview has one mission: to build the future of connected work. Our solutions enable organizations to connect the business from ideas to impact, empowering companies to accelerate the achievement of what matters most. Planview’s full spectrum of Portfolio Management and Work Management solutions creates an organizational focus on the strategic outcomes that matter and empowers teams to deliver their best work, no matter how they work. The comprehensive Planview platform and enterprise success model enables customers to deliver innovative, competitive products, services, and customer experiences. Headquartered in Austin, Texas, with locations around the world, Planview has more than 1,300 employees supporting 4,500 customers and 2.6 million users worldwide. For more information, visit www.planview.com.

SUPPORTING ORGANISATION

SIRIM is a premier industrial research and technology organisation in Malaysia, wholly-owned by the Minister​ of Finance Incorporated. With over forty years of experience and expertise, SIRIM is mandated as the machinery for research and technology development, and the national champion of quality. SIRIM has always played a major role in the development of the country’s private sector. By tapping into our expertise and knowledge base, we focus on developing new technologies and improvements in the manufacturing, technology and services sectors. We nurture Small Medium Enterprises (SME) growth with solutions for technology penetration and upgrading, making it an ideal technology partner for SMEs.

PARTNER

HashiCorp provides infrastructure automation software for multi-cloud environments, enabling enterprises to unlock a common cloud operating model to provision, secure, connect, and run any application on any infrastructure. HashiCorp tools allow organizations to deliver applications faster by helping enterprises transition from manual processes and ITIL practices to self-service automation and DevOps practices. 

PARTNER

IBM is a leading global hybrid cloud and AI, and business services provider. We help clients in more than 175 countries capitalize on insights from their data, streamline business processes, reduce costs and gain the competitive edge in their industries. Nearly 3,000 government and corporate entities in critical infrastructure areas such as financial services, telecommunications and healthcare rely on IBM’s hybrid cloud platform and Red Hat OpenShift to affect their digital transformations quickly, efficiently and securely. IBM’s breakthrough innovations in AI, quantum computing, industry-specific cloud solutions and business services deliver open and flexible options to our clients. All of this is backed by IBM’s legendary commitment to trust, transparency, responsibility, inclusivity and service.

Send this to a friend