We are creating some awesome events for you. Kindly bear with us.

Indian Researchers 3D Print N95 Mask with Nanoparticle Coating

Researchers have developed a reusable, recyclable, washable, odourless, non-allergic, and anti-microbial N95 mask by using 3D printing technology. The multi-layer mask has a shelf life of more than 5 years, depending upon the use. The outer layer is made up of silicon.

Apart from its well-known uses to prevent infections like COVID-19, the mask can also be used in industries where workers are exposed to high volumes of dust like cement or cotton factories, brick kilns, and paint industries. It can be modified according to the requirement by changing the filter configuration. As per a government press release, the mask can help prevent severe lung diseases such as silicosis. A trademark and a patent have also been filed for the mask called Nano Breath.

The mask consists of a 4-layer filtration mechanism wherein the outer and first layer of the filter is coated with nanoparticles. The second layer is a high-efficiency particulate absorbing (HEPA) filter, the third layer is a 100 µm filter, and the fourth layer is a moisture absorbent filter.

A Zetasizer Nano ZS, a facility supported by the government’s Fund for Improvement of Science & Technology Infrastructure (FIST) project, was used to carry out the work. It enables high-temperature thermal analysis for ceramic materials and catalysis applications.  It is a high-performance, versatile system for measuring particle size, zeta potential, molecular weight, particle mobility, and micro-rheology.

Image credits Press Information Bureau

Technology has played a significant role in the fight against the COVID-19 pandemic over the past two years. Indian institutes have invested resources in developing tech-enabled solutions for the new normal. Earlier this year, researchers from the Indian Institute of Technology in Jodhpur (IIT-Jodhpur) created an artificial intelligence (AI) model that can detect COVID-19 by examining the chest X-ray of patients. The team proposed a deep learning-based algorithm called COMiT-Net, which learns the abnormalities present in the chest X-ray images to differentiate between an affected lung and a non-affected lung. It can also identify infected regions of the lungs.

In March, Bengaluru-based scientists from the Centre for Nano and Soft Matter Sciences (CeNS) and the Jawaharlal Nehru Centre for Advanced and Scientific Research (JNCASR) developed an affordable solution to develop low-cost touch-cum-proximity sensors, popularly called touchless touch sensors, through a printing technique. The scientists set up a semi-automated production plant to produce printing-aided patterned transparent electrodes (a resolution of around 300 micrometres). It has the potential to be utilised in advanced touchless screen technologies. It could be used for self-service kiosks, ATMs, and vending machines.

As OpenGov Asia reported, the team fabricated a touch sensor that can sense a proximal or hover touch even from a distance of 9 centimetres from the device. The team also announced they would make several more prototypes using their patterned electrodes to prove their feasibility for other smart electronic applications. Industry players and research institutions and labs can access the technology on a request basis and through collaborative projects. The patterned transparent electrodes could be used in advanced smart electronic devices like touchless screens and sensors.


Send this to a friend