We are creating some awesome events for you. Kindly bear with us.

Electronic Fruit Bin to Help with Kiwifruit Harvest

Researchers from The University of Waikato in New Zealand have developed an electronic fruit bin that aids in the harvesting of kiwifruit. The automatic robot, which aims to make picking easier, won the Prototype Prize at the Fieldays Innovations Awards.

According to Nick Pickering, a lecturer at the University’s School of Engineering, the team was challenged to use automation technology to create something that would assist kiwifruit pickers on orchards, thereby opening jobs to a larger group of people.

Ultimately, Pickering says that the e-BIN had to be designed to be technically feasible, financially viable and desirable to all stakeholders.

“As a result, we devised this solution that will allow more people to pick kiwifruit. The key point is that we need something simple that can be commercialised quickly to help address the labour shortages that we’re experiencing,” he shared.

Robot to weightlifting physical labour

The concept arose to solve the kiwi industry’s severe labour shortages problem, particularly during harvest. Kiwifruit picking can be physically demanding because workers must carry a large bag

Image credits wwwwaikatoacnz

that they fill as they go. When full, it can weigh up to 25kg and must be emptied into a larger bin. While many people enjoy working outside, they are unable to handle the weight and constant bending involved in harvesting.

The e-BIN eliminates the need to pick the fruit. Rather than carrying a bag, a group of four pickers can walk alongside the e-BIN, which is on wheels. Each kiwifruit is picked and placed in a fruit catcher on the e-BIN. A net cushion secures the fruit before it falls and lands in the main bin.

The e-BIN human-assisted harvesting project was developed in collaboration with top kiwi leaders in the industry in New Zealand, who served as project sponsors. It has also included students, academics, and industry experts from the School of Engineering.

Pickering claims that their robot has a different system than the overseas Kiwi machine. According to him, the machine can be fine-tuned to suit other growing systems.

From an industrial standpoint, assisted robotics has the potential to solve many problems, but must be commercially viable. Through this project, they hope to determine the total financial cost-benefit ratio. Importantly, the project must address the need to expand the labour pool.

The innovation was recognised at the Fieldays Innovation Awards, where it won the Prototype Award and a NZ$10,000 cash prize to be used for testing the system in other markets.

The e-BIN has been tested both in the lab and in the field. The researcher first tests it with 3D-printed fruit before moving on to field testing. During the testing phase, researchers examined a variety of factors, including productivity and fruit damage. The results indicate that the e-BIN can reduce fatigue and operate safely in an orchard environment. Pickering believes the e-BIN will be validated in trials this season and commercialised soon after.

New Zealand places a high value on agricultural technology advancement. According to a recent OpenGov Asia report, the Massey University AgriFood Digital Lab is collaborating with the NZ Product Accelerator to establish a new agricultural technology centre in Palmerston North.

The AgriFood Digital Lab at Massey University is an industry-focused research facility that focuses on horticulture, precision agriculture, robotics, advanced materials, sports analytics, and biotechnology. Its primary goal is to create agritech solutions to industry challenges.

While NZ Product Accelerator is a government-funded programme that helps companies accelerate product development by utilising New Zealand’s brand of business. In essence, it is an incubator programme comprised of top technology experts to assist startups and businesses in their quest for success.

It should be able to provide the “missing science” in the field of agricultural technology through this new research centre. It had done so previously for numerous New Zealand companies in new product development, problem-solving, and embedding technological innovation.

Send this to a friend