Search
Close this search box.

We are creating some awesome events for you. Kindly bear with us.

Synthetic macromolecules proven to kill multidrug-resistant cancer cells

Synthetic macromolecules proven to kill multidrug-resistant cancer cells

A
multidisciplinary research team from the Agency of Science, Technology and Research
(A*STAR)’s Institute of Molecular and Cell Biology (IMCB), Institute of Bioengineering
and Nanotechnology (IBN), and
Genome Institute of Singapore (GIS),
together with IBM Research, has developed
synthetic macromolecules that have been proven to kill multidrug-resistant
cancer cells and cancer stem cells. The molecules also prevent metastasis (the
spread of cancer cells to a different part of the body from
where it started) and avert
the development of drug resistance.
According
to the press release, these novel macromolecules have the potential to be
developed into an anti-cancer drug to treat cancer patients and prevent cancer
relapse.
Cancer is a
leading cause of death worldwide. The use of multiple treatments with
conventional chemotherapeutic drugs has led to the development of drug
resistance. Cancer metastasis and relapse also occur in many patients. The
US government has established the Cancer
Moonshot initiative
with the aim of accelerating cancer research and
delivering improved treatment regimens. A critical aim of this programme,
outlined in the 2016
Blue Ribbon Panel Report
, is to overcome drug resistance of cancer. There is an urgent need to develop
new therapeutics that can kill multidrug-resistant cancer cells without
inducing drug resistance development after multiple treatments.
To tackle this complex challenge, a multidisciplinary
research team was brought together involving researchers from diverse fields
including chemistry (IBM Research), cancer biology (IMCB), bioengineering
(IBN), and genomics (GIS).
The team focused its studies heavily on the use of
macromolecules, which are large molecules or polymeric assemblies exhibiting unique
properties to attack diseases by mechanisms different from traditional
therapies. This is an emerging discipline of study, called Macromolecular
Therapeutics and is pioneered by researchers such as Dr Yi Yan Yang from
A*STAR’s IBN and Dr James Hedrick from IBM Research.
Its use in destroying cancer cells was demonstrated in
collaboration with Dr Qingfeng Chen from A*STAR’s IMCB, and Dr Paola Florez de
Sessions from A*STAR’s GIS, and was recently published in the peer-reviewed
journal, Journal of the American Chemical Society.
In this study, the researchers demonstrated that a
macromolecule containing positively charged components could bind to the
negatively charged surfaces of cancer cells. They also proved that another
portion of the macromolecule assimilated into the cell membrane, poked holes in
the cancer cell and destroyed it.

Credit: A*STAR

In early tests, the macromolecule proved successful in: 1)
combating multidrug-resistant cancer cells and cancer stem cells, 2) preventing
cancer cell migration (metastasis) and 3) defying drug resistance after
multiple treatment applications.
The new study built on a May 2016 study about the discovery
of a macromolecule to treat viruses, as well as a more recent study published
in March 2018, which showed that macromolecules may help fight superbugs such
as MRSA
(Methicillin-resistant Staphylococcus aureus) in the future.
Dr Qingfeng
Chen, Principal Investigator at A*STAR’s IMCB, said, “Our hypothesis was that
with macromolecular compounds, we could limit the growth of tumours by inducing membrane lysis [1] and
necrosis inside tumours without significant adverse effects in patients.”
“The
macromolecules were designed to self-assemble into core-shell structured
nanoparticles, which accumulate in tumour tissues. The shell prevents the
anti-cancer core from interacting with healthy cells before reaching the
tumour. Upon arrival at the tumour site, the shell will crack open to expose
the cancer-killing component that interacts with negative charges on the cancer
cell membrane to disrupt the membrane and kill the cell,” Dr Yi Yan Yang,
Group Leader at A*STAR’s IBN said.
The team collaborated with Dr Paola Florez de Sessions from
A*STAR’s GIS to perform the transcriptomic [2]
analysis. They found that the macromolecular compounds were
relatively inert compared to conventional anti-cancer drugs.
Macromolecular therapeutics has numerous potential
applications including consumer product additives, treating systemic viral and
bacterial infections, addressing agricultural disease, and cancer treatment.
Fundamental advancements in synthetic polymer chemistry form the foundation for
these therapeutic platforms, enabling the preparation of biocompatible and
degradable macromolecules with precisely defined properties.
“While we are excited
about the promise of this study, we note that it is still in its early stages
of research. We are seeking pharmaceutical industry partners to help accelerate
making this macromolecular treatment available to cancer patients,” said Dr
James Hedrick, Distinguished Research Staff Member at IBM Research – Almaden,
San Jose, California.
[1] Lysis is the disintegration of a cell by rupture of the cell wall or membrane.
[2] According to Nature magazine, ‘Transcriptomics
is the study of the transcriptome—the complete set of RNA transcripts that are
produced by the genome, under specific circumstances or in a specific cell. Comparison
of transcriptomes allows the identification of genes that are differentially
expressed in distinct cell populations, or in response to different treatments.’
Expressing a gene means manufacturing its corresponding protein. DNA makes RNA
and RNA makes protein. In the first major step, the information in DNA is
transferred to a messenger RNA (mRNA) molecule through transcription.
The resulting mRNA must next be translated into a protein molecule.

PARTNER

Qlik’s vision is a data-literate world, where everyone can use data and analytics to improve decision-making and solve their most challenging problems. A private company, Qlik offers real-time data integration and analytics solutions, powered by Qlik Cloud, to close the gaps between data, insights and action. By transforming data into Active Intelligence, businesses can drive better decisions, improve revenue and profitability, and optimize customer relationships. Qlik serves more than 38,000 active customers in over 100 countries.

PARTNER

CTC Global Singapore, a premier end-to-end IT solutions provider, is a fully owned subsidiary of ITOCHU Techno-Solutions Corporation (CTC) and ITOCHU Corporation.

Since 1972, CTC has established itself as one of the country’s top IT solutions providers. With 50 years of experience, headed by an experienced management team and staffed by over 200 qualified IT professionals, we support organizations with integrated IT solutions expertise in Autonomous IT, Cyber Security, Digital Transformation, Enterprise Cloud Infrastructure, Workplace Modernization and Professional Services.

Well-known for our strengths in system integration and consultation, CTC Global proves to be the preferred IT outsourcing destination for organizations all over Singapore today.

PARTNER

Planview has one mission: to build the future of connected work. Our solutions enable organizations to connect the business from ideas to impact, empowering companies to accelerate the achievement of what matters most. Planview’s full spectrum of Portfolio Management and Work Management solutions creates an organizational focus on the strategic outcomes that matter and empowers teams to deliver their best work, no matter how they work. The comprehensive Planview platform and enterprise success model enables customers to deliver innovative, competitive products, services, and customer experiences. Headquartered in Austin, Texas, with locations around the world, Planview has more than 1,300 employees supporting 4,500 customers and 2.6 million users worldwide. For more information, visit www.planview.com.

SUPPORTING ORGANISATION

SIRIM is a premier industrial research and technology organisation in Malaysia, wholly-owned by the Minister​ of Finance Incorporated. With over forty years of experience and expertise, SIRIM is mandated as the machinery for research and technology development, and the national champion of quality. SIRIM has always played a major role in the development of the country’s private sector. By tapping into our expertise and knowledge base, we focus on developing new technologies and improvements in the manufacturing, technology and services sectors. We nurture Small Medium Enterprises (SME) growth with solutions for technology penetration and upgrading, making it an ideal technology partner for SMEs.

PARTNER

HashiCorp provides infrastructure automation software for multi-cloud environments, enabling enterprises to unlock a common cloud operating model to provision, secure, connect, and run any application on any infrastructure. HashiCorp tools allow organizations to deliver applications faster by helping enterprises transition from manual processes and ITIL practices to self-service automation and DevOps practices. 

PARTNER

IBM is a leading global hybrid cloud and AI, and business services provider. We help clients in more than 175 countries capitalize on insights from their data, streamline business processes, reduce costs and gain the competitive edge in their industries. Nearly 3,000 government and corporate entities in critical infrastructure areas such as financial services, telecommunications and healthcare rely on IBM’s hybrid cloud platform and Red Hat OpenShift to affect their digital transformations quickly, efficiently and securely. IBM’s breakthrough innovations in AI, quantum computing, industry-specific cloud solutions and business services deliver open and flexible options to our clients. All of this is backed by IBM’s legendary commitment to trust, transparency, responsibility, inclusivity and service.