February 26, 2024

We are creating some awesome events for you. Kindly bear with us.

Technique Smooths Path for AI Training in Wireless Devices

Federated learning is a great tool for training Artificial Intelligence (AI) systems while protecting data privacy, but the amount of data traffic involved has made it unwieldy for systems that include wireless devices. A new technique uses compression to drastically reduce the size of data transmissions, creating additional opportunities for AI training on wireless technologies.

Federated learning is a form of machine learning involving multiple devices, called clients. Each of the clients is trained using different data and develops its own model for performing a specific task. The clients then send their models to a centralised server.

The centralised server draws on each of those models to create a hybrid model, which performs better than any of the other models on their own. The central server then sends this hybrid model back to each of the clients. The entire process is then repeated, with each iteration leading to model updates that ultimately improve the system’s performance.

One of the advantages of federated learning is that it can allow the overall AI system to improve its performance without compromising the privacy of the data being used to train the system. For example, you could draw on privileged patient data from multiple hospitals in order to improve diagnostic AI tools, without the hospitals having access to data on each other’s patients

– Chau-Wai Wong, Assistant Professor, Electrical and Computer Engineering, North Carolina State University

There are many tasks that could be improved by drawing on data stored on people’s personal devices, such as smartphones. And federated learning would be a way to make use of that data without compromising anyone’s privacy.

However, there’s a stumbling block: federated learning requires a lot of communication between the clients and the central server during training, as they send model updates back and forth. In areas where there is limited bandwidth, or where there is a significant amount of data traffic, the communication between clients and the centralised server can clog wireless connections, making the process slow.

Specifically, the researchers developed a technique that allows the clients to compress data into much smaller packets. The packets are condensed before being sent and then reconstructed by the centralised server. The process is made possible by a series of algorithms developed by the research team. Using the technique, the researchers were able to condense the amount of wireless data shipped from the clients by as much as 99%. Data sent from the server to the clients is not compressed.

The technique makes federated learning viable for wireless devices where there is limited available bandwidth. For example, it could be used to improve the performance of many AI programs that interface with users, such as voice-activated virtual assistants.

As reported by OpenGov Asia, a new report showed that Artificial Intelligence (AI) has reached a critical turning point in its evolution. Substantial advances in language processing, computer vision and pattern recognition mean that AI is touching people’s lives daily—from helping people to choose a movie to aid in medical diagnoses.

With that success, however, comes a renewed urgency to understand and mitigate the risks and downsides of AI-driven systems, such as algorithmic discrimination or the use of AI for deliberate deception. Computer scientists must work with experts in the social sciences and law to assure that the pitfalls of AI are minimised.

In terms of AI advances, the panel noted substantial progress across subfields of AI, including speech and language processing, computer vision and other areas. Much of this progress has been driven by advances in machine learning techniques, particularly deep learning systems, which have leapt in recent years from the academic setting to everyday applications.

PARTNER

Qlik’s vision is a data-literate world, where everyone can use data and analytics to improve decision-making and solve their most challenging problems. A private company, Qlik offers real-time data integration and analytics solutions, powered by Qlik Cloud, to close the gaps between data, insights and action. By transforming data into Active Intelligence, businesses can drive better decisions, improve revenue and profitability, and optimize customer relationships. Qlik serves more than 38,000 active customers in over 100 countries.

PARTNER

CTC Global Singapore, a premier end-to-end IT solutions provider, is a fully owned subsidiary of ITOCHU Techno-Solutions Corporation (CTC) and ITOCHU Corporation.

Since 1972, CTC has established itself as one of the country’s top IT solutions providers. With 50 years of experience, headed by an experienced management team and staffed by over 200 qualified IT professionals, we support organizations with integrated IT solutions expertise in Autonomous IT, Cyber Security, Digital Transformation, Enterprise Cloud Infrastructure, Workplace Modernization and Professional Services.

Well-known for our strengths in system integration and consultation, CTC Global proves to be the preferred IT outsourcing destination for organizations all over Singapore today.

PARTNER

Planview has one mission: to build the future of connected work. Our solutions enable organizations to connect the business from ideas to impact, empowering companies to accelerate the achievement of what matters most. Planview’s full spectrum of Portfolio Management and Work Management solutions creates an organizational focus on the strategic outcomes that matter and empowers teams to deliver their best work, no matter how they work. The comprehensive Planview platform and enterprise success model enables customers to deliver innovative, competitive products, services, and customer experiences. Headquartered in Austin, Texas, with locations around the world, Planview has more than 1,300 employees supporting 4,500 customers and 2.6 million users worldwide. For more information, visit www.planview.com.

SUPPORTING ORGANISATION

SIRIM is a premier industrial research and technology organisation in Malaysia, wholly-owned by the Minister​ of Finance Incorporated. With over forty years of experience and expertise, SIRIM is mandated as the machinery for research and technology development, and the national champion of quality. SIRIM has always played a major role in the development of the country’s private sector. By tapping into our expertise and knowledge base, we focus on developing new technologies and improvements in the manufacturing, technology and services sectors. We nurture Small Medium Enterprises (SME) growth with solutions for technology penetration and upgrading, making it an ideal technology partner for SMEs.

PARTNER

HashiCorp provides infrastructure automation software for multi-cloud environments, enabling enterprises to unlock a common cloud operating model to provision, secure, connect, and run any application on any infrastructure. HashiCorp tools allow organizations to deliver applications faster by helping enterprises transition from manual processes and ITIL practices to self-service automation and DevOps practices. 

PARTNER

IBM is a leading global hybrid cloud and AI, and business services provider. We help clients in more than 175 countries capitalize on insights from their data, streamline business processes, reduce costs and gain the competitive edge in their industries. Nearly 3,000 government and corporate entities in critical infrastructure areas such as financial services, telecommunications and healthcare rely on IBM’s hybrid cloud platform and Red Hat OpenShift to affect their digital transformations quickly, efficiently and securely. IBM’s breakthrough innovations in AI, quantum computing, industry-specific cloud solutions and business services deliver open and flexible options to our clients. All of this is backed by IBM’s legendary commitment to trust, transparency, responsibility, inclusivity and service.

Send this to a friend