
- Like
- Digg
- Del
- Tumblr
- VKontakte
- Buffer
- Love This
- Odnoklassniki
- Meneame
- Blogger
- Amazon
- Yahoo Mail
- Gmail
- AOL
- Newsvine
- HackerNews
- Evernote
- MySpace
- Mail.ru
- Viadeo
- Line
- Comments
- Yummly
- SMS
- Viber
- Telegram
- Subscribe
- Skype
- Facebook Messenger
- Kakao
- LiveJournal
- Yammer
- Edgar
- Fintel
- Mix
- Instapaper
- Copy Link
Data is information that has been organised in a way that makes it simple to move or process. It is a piece of information that has been converted into binary digital form for computers and modern methods of information transmission.
Connected data, on the other hand, is a method of displaying, using, and preserving relationships between data elements. Graph technology aids in uncovering links in data that conventional approaches are unable to uncover or analyse.
Different sectors have invested in big data technologies because of the promise of valuable business insights. As a result, various industries express a need for connected data, particularly when it comes to connecting people such as employees or customers to products, business processes and other Internet-enabled devices (IoT).
In an exclusive interview with Mohit Sagar, CEO and Editor-in-Chief of OpenGov Asia, Chandra Rangan, Chief Marketing Officer of Neo4j shared his knowledge on how a connected data strategy becomes of paramount importance in building a smart nation.
Connected data enables businesses
A great example of the power of graph technology, and a very common use case for Neo4j, is its use in the financial sector to uncover fraud. Finding fraud is all about trying to make connections and understand relationships, Chandra elaborates. A graph-based system could detect if fraud is taking place in one location and determine if the same scenario has occurred in other locations.
“How does one make sense of this? Essentially, you are traversing a network of interconnected data using the relationships between that data. Then you begin to see patterns develop and these patterns provide you with answers so that you can conclude whether there is fraud.”
What is of great concern is that fraud is occurring with much greater frequency and with a higher success rate nowadays. The key to stopping and mitigating the impact is time. Instead of detecting a fraud that occurred hours or days ago,
“What if the organisation could detect it almost immediately and in real-time as it occurs?” asks Chandra. “Graph offers this kind of response and is why it’s a great example of value!”
Supply chain and management are other excellent examples of RoI. One of Neo4j’s clients, which operates arguably the largest rail network in the United States and North America created a digital twin of the entire rail network and all the goods. With graph technology across their network, they can now do all kinds of interesting optimisation much faster, leading to better, more efficient outcomes for their entire system.
The pandemic has taught the world about the value and fragility of supply chains. Systems across the globe are being reimagined as the world’s economy realise the need to become more digital and strategic. More supply sources, data, data sharing, customer demands, and increased complexity necessitate modern, purpose-built solutions.
Apart from all the new expectations and requirements for modern supply chains, systems need to and are becoming more interconnected because of new technologies.
Maintaining consistent profitability is difficult for firms with a high proportion of assets. Executives must oversee intricate worldwide supply chains, extensive asset inventories and field operations that dispatch workers to dangerous or inaccessible places.
With this, organisations need a platform that connects their workforces and makes them more capable, productive and efficient. A platform that provides enterprises with real-time visibility and connectivity, while also assuring efficiency, safety, and compliance.
Modern technologies are required to improve interconnectivity, maximise the value of data, automate essential procedures, and optimise the organisation’s most vital workflows.
Modern data applications require a connected platform
“When we programme, when we create applications, we think in what we are calling a graph. This is the most intuitive approach that you can have,” says Chandra.
Any application development begins with understanding the types of questions people want to solve and then mapping it to a wide range of outcomes that they want to achieve. These are typically mapped in what is known as an entity relationship diagram.
Individuals’ increased reliance on systems that work in a way that makes sense to them and supports them has increased criticality. And frequently, when these systems fail, Neo4j makes sense of complexity and simplifies what needs to be done, resulting in a significant acceleration.
As the world becomes more collaborative, integrated, and networked, nations must respond more quickly to changes in their business environment brought on by the digital era; otherwise, they risk falling behind or entering survival mode.
The proliferation of new technologies, platforms, and devices, as well as the evolving nature of work, are compelling businesses to recognise the significance of leveraging the most recent technology to achieve greater operational efficiencies and business agility.
A graph platform connects individuals to what they require, and when and when they require it. It augments their existing process by facilitating the effective recording and management of personnel data. Neo4j Graph Data Science assists data scientists in finding connections in huge data to resolve important business issues and enhance predictions.
Businesses employ insights from graph data science to discover activities that point to fraud, find entities or people who are similar, enhance customer happiness through improved suggestions, and streamline supply chains. The dedicated workspace combines intake, analysis, and management for simple model improvement without workflow reconstruction.
As a result, people are more engaged, productive, and efficient with connected data. Nations can bridge information and communication gaps between executive teams, field technicians, plant operators, warehouse operators and maintenance engineers. Increasing agility and productivity offers obvious commercial benefits.
In short, organisations easily integrate their whole industrial workforce to increase operational excellence and decrease plant downtime, hence maximising revenues. This methodology is based on a collaborative platform direction.
Contextualising data increases its value
According to Chandra, data is a representation of the world in which people live, and people use data to represent this world. As a result, the world is becoming more connected, and people no longer live in silos and continue to be associated in society.
“If you think about data as the representation of the world that we live in, it is connected data and we can deal with all the complexities that we need to deal with when we try to make sense out of it,” explains Chandra.
Closer to home, connected data is crucial to Singapore’s development as a smart nation. “Connected data is at the centre of each of those conversations around developing the nation. When you think of Singapore as a connected ecosystem and when you think about citizens, services, logistics, contract tracing, and supply chain.”
Chandra believes that the attributes have saved the connection between data and people, which is why connections are important. Once people understand those connections, it becomes much easier and much faster to derive the insights that are required.
Without connected data, organisations lack key information needed to gain a deeper understanding of their customers, build a complete network topology, deliver relevant recommendations in real-time, or gain the visibility needed to prevent fraud.
Thus, “knowing your customer is understanding connected data.” With the right tools, data may be a real-time, demand-driven asset that a financial institution can utilise to reinvent ineffective processes and procedures and change how it interacts with and comprehends its consumers.
“Me as a person – who I am, my name, where I live – these are all properties of who I am. But what really makes me me, are the relationships I have built over time. And so, the notion that almost every problem has data that you can really make sense of with graphs is the larger “Aha” moment,” Chandra ends.
- Like
- Digg
- Del
- Tumblr
- VKontakte
- Buffer
- Love This
- Odnoklassniki
- Meneame
- Blogger
- Amazon
- Yahoo Mail
- Gmail
- AOL
- Newsvine
- HackerNews
- Evernote
- MySpace
- Mail.ru
- Viadeo
- Line
- Comments
- Yummly
- SMS
- Viber
- Telegram
- Subscribe
- Skype
- Facebook Messenger
- Kakao
- LiveJournal
- Yammer
- Edgar
- Fintel
- Mix
- Instapaper
- Copy Link
The National Heart Centre Singapore (NHCS) has been on a remarkable journey of advancements in cardiovascular research, particularly in the prevention, diagnosis, and management of heart diseases. With the global rise in heart disease cases, NHCS’s dedication to scientific knowledge and innovation has become increasingly vital.
Since its establishment in 2014, the National Heart Research Institute of Singapore (NHRIS) at NHCS has positioned itself as a leading institution for cardiovascular research in the region. Over the years, NHRIS has achieved significant breakthroughs that hold the potential to transform patient outcomes.
NHRIS’s research encompasses a wide spectrum of disciplines within cardiovascular medicine, spanning basic, translational, and clinical research. Notable achievements include Heart Stem Cell Therapy and Preventing Fibrosis.
By studying patients’ heart stem cells, researchers have uncovered new treatments for heart diseases. For example, a breakthrough treatment using myeloperoxidase has been discovered for hypertrophic cardiomyopathy, an inherited condition characterised by thickening of the heart muscle.
Also, through the study of heart tissue from patients undergoing surgery, NHRIS researchers have identified a potential treatment involving interleukin-11 antibodies to prevent inflammation and fibrosis in the heart and other organs. This innovative therapy has the potential to improve outcomes for patients with various inflammatory and fibrotic conditions.
The next phase of NHCS’s research efforts over the coming years will focus on three key areas:
- Discovery of New Treatments: Ongoing research aims to develop new treatments for heart diseases, enhancing patient outcomes.
- Utilising Artificial Intelligence: NHCS is at the forefront of integrating artificial intelligence (AI) into cardiovascular care. AI holds promise in predicting, diagnosing, and monitoring heart diseases with greater precision and efficiency. The APOLLO study, initiated in 2021, is building an AI-driven national platform for coronary angiography analysis, offering detailed reports on patients’ conditions and future cardiovascular disease risk.
- Clinical Trials and Population Health Studies: NHCS’s research agenda includes conducting clinical trials and population health studies to prevent the onset of heart disease.
NHRIS is pioneering innovative approaches, including Visualising Energy Pathways and AI Applications.
Disturbances in energy-producing pathways in heart muscle contribute to heart conditions as Hyperpolarised magnetic resonance spectroscopy, a novel imaging technology available only in a few centres worldwide, allows the measurement of these metabolic pathways, potentially leading to new treatments for heart disease.
On the other hand, AI accelerates research in the field of cardiovascular science. By processing vast datasets and identifying patterns, AI systems assist researchers in identifying novel treatment methods, risk factors, and disease mechanisms. These insights lead to breakthroughs in treatment and prevention methods, advancing the overall understanding of cardiovascular diseases.
With this, NHCS is leveraging AI to detect, predict, and diagnose heart diseases by analysing complex imaging data. AI provides clinicians with invaluable insights, enabling personalised care and early intervention.
In addition, NHCS collaborates with other heart research institutes and hospitals through CADENCE (Cardiovascular Disease National Collaborative Enterprise), a national platform that combines heart research capabilities in data science, clinical trials, and AI. This collaboration ensures a collective effort to advance cardiovascular research and improve patient care.
NHCS’s groundbreaking research initiatives in AI applications, clinical trials, and collaborative efforts underscore its commitment to enhancing patient care. As NHCS continues its pursuit of research excellence, its impact extends beyond Singapore, benefiting individuals across the region and around the world. The institution is poised to make substantial progress in preventing, diagnosing, and managing cardiovascular diseases, ultimately reshaping the future of cardiovascular medicine.
- Like
- Digg
- Del
- Tumblr
- VKontakte
- Buffer
- Love This
- Odnoklassniki
- Meneame
- Blogger
- Amazon
- Yahoo Mail
- Gmail
- AOL
- Newsvine
- HackerNews
- Evernote
- MySpace
- Mail.ru
- Viadeo
- Line
- Comments
- Yummly
- SMS
- Viber
- Telegram
- Subscribe
- Skype
- Facebook Messenger
- Kakao
- LiveJournal
- Yammer
- Edgar
- Fintel
- Mix
- Instapaper
- Copy Link
An innovative microscope developed by a research team at the Hong Kong University of Science and Technology (HKUST) is poised to revolutionise the field of cancer surgery. This cutting-edge microscope, powered by artificial intelligence, has the potential to transform the way surgeons detect and remove cancerous tissue during operations, thereby sparing patients from the distressing prospect of secondary surgeries.
Lung cancer, a leading cause of cancer-related deaths worldwide, has been a focal point for this ground-breaking research. Professor Terence Wong Tsz-Wai, the principal investigator of the project and an assistant professor in the Department of Chemical and Biological Engineering at HKUST, highlights the urgency of their work.

He notes that between 10% to 20% of lung cancer surgery cases require patients to return for a second operation due to incomplete removal of cancer cells. This uncertainty has long plagued surgeons, who often struggle to determine if they’ve successfully excised all cancerous tissue during the initial surgery.
The HKUST research team, led by Prof. Wong, is eager to see their innovation make a significant impact. Collaborating with five hospitals, including Queen Mary Hospital, Prince of Wales Hospital in Hong Kong, and three mainland Chinese hospitals, they have embarked on a large-scale clinical trial involving around 1,000 patient tissue samples. The goal is to have the microscope officially in service locally by 2024 and on the mainland by 2025.
The current methods for imaging cancer tissue offer either accuracy with lengthy delays or speed at the cost of accuracy. Traditional microscopy, considered the gold standard, is highly accurate but can take up to a week to generate results. This means patients must endure a week of anxious waiting to know the outcome of their surgery. In cases where the operation is deemed unsuccessful, patients face the daunting prospect of a second surgery to remove the remaining cancer cells.
The alternative, known as the frozen section, provides quicker results within 30 minutes but sacrifices accuracy, with an estimated accuracy rate of only around 70%.
The HKUST research team’s breakthrough technology, termed “Computational High-throughput Autofluorescence Microscopy by Pattern Illumination” (CHAMP), has changed this landscape. It can detect cancer cells in just three minutes with an accuracy rate exceeding 90%, rivalling the gold standard but with significantly faster results.
CHAMP employs ultraviolet (UV) light excitation to image tissue surfaces at a specific wavelength. Subsequently, a deep learning algorithm transforms the obtained greyscale image into a histological image, facilitating instant interpretation by doctors. This real-time feedback empowers surgeons to ensure they have completely removed all cancer cells during the operation.
CHAMP’s potential has garnered local, regional, and international acclaim, leading to the establishment of a start-up supported by HKUST and funded by the Technology Start-up Support Scheme for Universities (TSSSU). Beyond developing the technology, the company plans to manufacture CHAMP microscopes for medical institutions in Hong Kong, mainland China, and overseas markets.
This endeavour represents the culmination of years of meticulous research, starting with Prof. Wong’s PhD training at Washington University in St. Louis and the California Institute of Technology. During this period, Prof. Wong, under the guidance of biomedical imaging expert Prof. Lihong Wang, developed a microscope capable of analysing breast cancer tumours with an accuracy rate comparable to the gold standard but with results in just one to two hours.
The shift in focus to lung cancer occurred when a pulmonologist approached Prof. Wong, recognising the potential of the technology to enhance precision during lung cancer surgery. This decision led to the development of CHAMP microscopy, which is approximately 100 times faster than Prof. Wong’s earlier work during his PhD training. This breakthrough makes CHAMP clinically useful and impactful.
The applications of CHAMP extend beyond lung and breast cancers. The research team is conducting tests on smaller scales for conditions such as liver, colorectal, kidney, and skin cancers, as well as prostate gland conditions. Prof. Wong is confident that CHAMP will elevate medical imaging and diagnosis to new heights, benefiting not only Hong Kong hospitals but also healthcare institutions nationwide and abroad. This pioneering technology represents a beacon of hope for cancer patients, offering the promise of quicker, more accurate surgeries and improved outcomes.
OpenGov Asia reported that the Hong Kong Science and Technology Parks Corporation (HKSTP) spearheaded an initiative aimed at promoting innovation and technology in the biotech sector, showcasing Hong Kong’s pioneering advancements and entrepreneurial spirit.
This initiative was part of the “Think Business, Think Hong Kong” event organised by the Hong Kong Trade Development Council (HKTDC) in Paris recently. The event was a platform to underscore the potential for cross-border collaboration between Hong Kong and France in the field of biotechnology and innovation.
- Like
- Digg
- Del
- Tumblr
- VKontakte
- Buffer
- Love This
- Odnoklassniki
- Meneame
- Blogger
- Amazon
- Yahoo Mail
- Gmail
- AOL
- Newsvine
- HackerNews
- Evernote
- MySpace
- Mail.ru
- Viadeo
- Line
- Comments
- Yummly
- SMS
- Viber
- Telegram
- Subscribe
- Skype
- Facebook Messenger
- Kakao
- LiveJournal
- Yammer
- Edgar
- Fintel
- Mix
- Instapaper
- Copy Link
The government has unveiled the Intelligent Grievance Monitoring System (IGMS) 2.0 Public Grievance Portal and Automated Analysis in the Tree Dashboard portal under the Department of Administrative Reforms and Public Grievances (DARPG). It was unveiled by Jitendra Singh, the Union Minister of State (Independent Charge) for Science and Technology.
The IGMS 2.0 Dashboard was developed by the Indian Institute of Technology, Kanpur (IIT-Kanpur) as part of an agreement with the DARPG through a memorandum of understanding (MoU) signed in 2021. It enhances DARPG’s Centralised Public Grievance Redress and Monitoring System Information Systems (CPGRAMS) by integrating artificial intelligence (AI) capabilities. CPGRAMS is an online platform available to citizens round-the-clock to lodge their grievances to the public authorities on any subject related to service delivery.

The dashboard offers instant tabular analyses of both grievances filed and disposed of. It provides data categorised by state and district for grievances filed, and it also offers Ministry-wise data. Additionally, the dashboard can help officials identify the root causes of grievances.
The CPGRAMS portal receives an increasingly high caseload of issues raised by the general public. Given the public’s expectations for the timely resolution of their grievances, the portal receives approximately 2 million grievances annually.
Due to the substantial volume of grievances received, the manual classification and monitoring of cases is not feasible. The IGMS portal will assist the DARPG in generating draft letters for specific schemes or ministries. This automation expedites the grievance redressal process carried out by the respective ministries and departments involved.
According to Minister Singh, the Prime Minister has repeatedly emphasised the significance of grievance redressal as a crucial element to keep the government accountable and promote citizen-centric governance. In alignment with this vision, a more robust human interface mechanism has been introduced, which includes counselling services provided after the resolution of grievances.
The Minister praised DARPG for ensuring that the CPGRAMS portal is accessible in 22 Scheduled languages, in addition to English, ensuring that the benefits of the portal are accessible to the common man. He also emphasised the importance of integrating state public grievance (PG) portals and other government portals with CPGRAMS for more effective and streamlined grievance redressal processes.
He claimed that thanks to the reforms implemented by DARPG in the CPGRAMS, the average time it takes for central ministries and departments to resolve public grievances has decreased. There has been a decline of almost 50% in the average disposal time for central ministries and departments from 32 days in 2021 to 18 days in 2023.
Minister Singh also launched the Swachhata Special Campaign 3.0 and unveiled the Precedent Book (e-book) developed by the department. He praised the DARPG for achieving the transition to a fully paperless office, where all communication is conducted through the eOffice portal.
During the past two Swachhata campaigns, an impressive 9 million square feet of prime office space has been successfully cleared and repurposed for productive use. Additionally, 456,000 public grievances have been effectively redressed, and 8,998 references from Members of Parliament (MPs) have been addressed. The Swachhata campaign has also played a pivotal role in promoting an eOffice work culture within the government, resulting in over 90% of file work being transitioned to an online format.
- Like
- Digg
- Del
- Tumblr
- VKontakte
- Buffer
- Love This
- Odnoklassniki
- Meneame
- Blogger
- Amazon
- Yahoo Mail
- Gmail
- AOL
- Newsvine
- HackerNews
- Evernote
- MySpace
- Mail.ru
- Viadeo
- Line
- Comments
- Yummly
- SMS
- Viber
- Telegram
- Subscribe
- Skype
- Facebook Messenger
- Kakao
- LiveJournal
- Yammer
- Edgar
- Fintel
- Mix
- Instapaper
- Copy Link
Public transportation is a crucial service for enhancing the general satisfaction the government provides. In light of this, the Indonesian government has established high-speed rail infrastructure for Jakarta-Bandung mobility.
The Ministry of Communication and Information Technology (Kominfo) fully supports the Jakarta-Bandung High-Speed Train (KCJB) WHOOSH operation. Kominfo’s Budi Arie Setiadi expressed continuous monitoring for the availability and reliability of digital connectivity, particularly telecommunications networks along the first high-speed rail route in Indonesia.
“We, along with the telecommunications ecosystem, conducted tests. Kominfo is tasked with supporting signal-related issues. We assessed the signal quality along our journey and found that we could use devices and frequencies for communication,” he explained.
Minister Budi Arie emphasised that KCJB, as a technological leap for Indonesia’s progress, needs full support from the latest telecommunications technology. With advancements in transportation paralleled by digital technology, it will undoubtedly facilitate more efficient access for the public.
“This is a technological leap for Indonesia’s progress. Because this train is solid, the tracks are seamless, and the signal is robust. Our duty and responsibility are to support it,” he added.
Kominfo assured that the quality of telecommunications services would sustain the overall KCJB service. According to them, the journey from KCJB Halim Station to KCJB Padalarang Station and vice versa proceeded smoothly.
“Overall, the management and governance of the high-speed train are excellent,” he noted.
At this trial event, Minister Budi Arie Setiadi was joined by Deputy Minister of Kominfo Nezar Patria and senior officials from the Ministry of Communication and Information Technology. Minister Budi Arie encouraged the telecommunications service provider network to oversee and guarantee the quality of the network.
Ismail, the Director-General of Resources and Equipment of Posts and Information Technology at Kominfo, explained that the test conducted by Kominfo officials and telecommunications service providers is part of the initial process to support digital connectivity for KCJB. Kominfo has prepared radio frequency spectra for quality telecommunications signal transmission.
“And, fortunately, the signal used, or the frequency used, is now in collaboration with one of the biggest telecommunication companies in Indonesia. This cooperation began about two or three years ago. And, thank God, we witnessed today that the train’s communication system worked well. No signal interruptions,” he stated.
Director-General Ismail states that 5G telecommunication networks are available at Halim KCJB Station and Padalarang KCJB Station. This network supports connectivity and signifies that Indonesia is ready for full-scale and comprehensive digital transformation, even in minor details.
“For these two station locations here (Halim) and in Padalarang, the 5G signal has already been covered. Passengers at these stations can now enjoy 5G services. The remaining task is to improve the signal for passengers during the journey. So, from Jakarta to Padalarang and Bandung, we hope there will be no frequency or cellular signal interruptions,” he explained.
Next, Henry Mulya Syam, the President and Director of the Telecommunication company, stated that they would address several remaining telecommunications service challenges at various points along the KCJB route.
“There are several sites to be added, both outdoor and on the KCJB panel. We have conducted evaluations, so hopefully, within 6 to 9 months, because new towers need to be built,” he clarified.
Previously, together with President Joko Widodo and several members of the Indonesia Maju Cabinet, Minister of Communication and Information Technology Budi Arie Setiadi conducted a test journey on the KCJB from Halim Station, East Jakarta, to Padalarang Station, West Bandung Regency. The KCJB, WHOOSH, travels 350 kilometres per hour, making it the first high-speed train in Indonesia and Southeast Asia.
- Like
- Digg
- Del
- Tumblr
- VKontakte
- Buffer
- Love This
- Odnoklassniki
- Meneame
- Blogger
- Amazon
- Yahoo Mail
- Gmail
- AOL
- Newsvine
- HackerNews
- Evernote
- MySpace
- Mail.ru
- Viadeo
- Line
- Comments
- Yummly
- SMS
- Viber
- Telegram
- Subscribe
- Skype
- Facebook Messenger
- Kakao
- LiveJournal
- Yammer
- Edgar
- Fintel
- Mix
- Instapaper
- Copy Link
Rehabilitation services have gained increasing significance, as highlighted by Deputy Prime Minister Heng Swee Keat during RehabWeek 2023. The demand for rehab services is growing worldwide due to an ageing population and a rising incidence of chronic diseases. To meet this demand and improve outcomes, the field of rehabilitation is embracing innovation, particularly through advancements in technology, robotics, and digitalisation.
Rehabilitation plays a crucial role in enabling individuals, regardless of age, to regain independence and participate meaningfully in daily life. With the World Health Organisation estimating that 1 in 3 people globally may benefit from rehab services, the importance of this field cannot be overstated.
Beyond individual well-being, rehabilitation contributes to productive longevity and reduces downstream medical costs when integrated into holistic care plans. Thus, it aligns with the United Nations Sustainable Development Goal of “healthy lives and well-being for all at all ages.”
Deputy Prime Minister Heng shared his personal experience as a stroke survivor, emphasising the pivotal role that therapists and early rehabilitation played in his recovery journey. Early rehab interventions were instrumental in mitigating the debilitating effects of extended bed rest in the ICU. Dedicated therapists, combined with intensive rehab, enabled him to regain full functionality, underscoring the transformative potential of rehabilitation services.
Innovations in rehabilitation leverage broader trends like robotics and digitalisation. These innovations offer precision rehabilitation, tailoring treatment plans to individual needs. They also mitigate manpower constraints by augmenting human efforts with technology.
For instance, robotics-assisted physiotherapy and games-based cognitive exercises are becoming increasingly prevalent. Moreover, virtual rehabilitation has gained prominence during the COVID-19 pandemic, enhancing convenience and empowering patients to take charge of their rehab journeys from home.
Many societies are facing the dual challenge of an ageing population and a declining workforce to provide rehabilitation services. Technology is critical in augmenting these efforts to meet growing demand. Innovations in rehabilitation enhance its effectiveness and accessibility, ensuring that patients follow through with and benefit from rehab programs.
Singapore is at the forefront of innovative rehabilitation practices. Its acute hospitals offer excellent rehab care services and conduct research to improve care. Notably, Tan Tock Seng Hospital is a pioneer in rehabilitation medicine. Changi General Hospital houses the Centre for Healthcare Assistive and Robotics Technology (CHART), facilitating the synergy between clinical needs and technological innovation.
The One-Rehab Framework is a recent innovation in Singapore, ensuring timely access to rehabilitation care. This framework enables seamless care coordination across different settings and care team members through a common IT portal and harmonised clinical outcomes. It streamlines the sharing of relevant patient information and encourages right-siting of care within the community, reducing the burden on acute hospitals.
According to Deputy Prime Minister Heng, RehabWeek serves as a platform for delegates with diverse expertise and a shared commitment to advancing rehabilitation care. It encourages the sharing of best practices and useful technologies to strengthen collective impact, especially when addressing global challenges.
Singapore stands ready to collaborate with international partners, offering its strong ecosystem in research, innovation, and enterprise to advance the field of rehabilitation for the benefit of people worldwide.
He added that rehabilitation is evolving and embracing technological innovations to meet the increasing demand for its services, especially in ageing societies. “Collaboration, innovation, and a focus on the last-mile delivery of care are crucial for ensuring that individuals can live well and maximise their potential through effective rehabilitation,” Deputy Prime Minister Heng said. “Singapore’s commitment to these principles makes it a valuable partner in advancing the frontiers of rehabilitation on a global scale.”
- Like
- Digg
- Del
- Tumblr
- VKontakte
- Buffer
- Love This
- Odnoklassniki
- Meneame
- Blogger
- Amazon
- Yahoo Mail
- Gmail
- AOL
- Newsvine
- HackerNews
- Evernote
- MySpace
- Mail.ru
- Viadeo
- Line
- Comments
- Yummly
- SMS
- Viber
- Telegram
- Subscribe
- Skype
- Facebook Messenger
- Kakao
- LiveJournal
- Yammer
- Edgar
- Fintel
- Mix
- Instapaper
- Copy Link
The Vietnamese government has said that digital transformation and green transformation are inevitable global trends. They have a crucial role in enhancing economic growth, labour productivity, competitiveness, production, and business efficiency. They also reduce reliance on fuel sources that cause pollution and minimise carbon footprint.
To discuss digital and green transformation for sustainable development and to foster networking opportunities for businesses to accelerate their green transitions, the Ministry of Science and Technology held a forum in the northern province of Quang Ninh.

Domestic and international scientists, along with representatives from organisations and technology companies, deliberated on strategies to speed up green and digital transformations. They underscored the importance of advancing technological innovation and implementing reforms in human resource management, training, and quality enhancement to create new products and processes. This, in turn, will boost business value, aid in the delivery of better goods and services to society, and expedite Vietnam’s industrialisation and modernisation processes.
Participants suggested the establishment of a support mechanism for industries implementing green and digital transformation solutions in Vietnamese businesses. They also stressed that it is necessary to promote Horizon Europe’s international cooperation programme on joint research and innovation for Vietnam and have comprehensive digital transformation solutions for businesses.
During the forum, Quang Ninh province representatives, the Vietnam Union of Science and Technology Associations (VUSTA), businesses, and organisations exchanged memoranda of understanding regarding collaboration in the domains of digital transformation and green transformation.
Vietnam has been introducing emerging technologies in the agricultural sector to promote sustainable growth. Earlier this year, the government announced plans to introduce artificial intelligence (AI) for the optimisation of farming practices, including weather prediction, monitoring of plant and livestock health, and enhancing product quality.
AI can improve crop productivity and help control pests, diseases, and cultivation conditions. It can improve the performance of farming-related tasks across food supply chains. Advancements in the manufacturing of AI-controlled robots are assisting farmers worldwide in utilising less land and labour while simultaneously boosting production output.
Vietnam’s commitment to technological advancements in agriculture extends beyond AI, as highlighted by the government’s plans to harness biotechnology. In September, the Politburo issued a resolution under which Vietnam aims to be among the top ten Asian countries in biotechnology production and services by 2030.
As OpenGov Asia reported, the biotechnology sector is on the verge of becoming a significant economic and technological industry, with an expected 50% rise in the number of companies in terms of investment size and growth rate. Additionally, it is projected that half of the imported biotechnology products will be substituted by domestic production. This sector is anticipated to make a 7% contribution to the Gross Domestic Product (GDP).
Vietnam aims to establish a thriving biotechnology sector by 2045, positioning itself as a prominent centre for smart production, services, biotechnology startups, and innovation in Asia. This sector is expected to contribute 10% to 15% to the GDP by that year.
As a result of its tropical climate and its economic shift away from agriculture, biotechnology plays a vital role in Vietnam’s industrialisation and modernisation efforts. It contributes significantly to ensuring food security, facilitating economic restructuring, and promoting sustainable development. Furthermore, in environmental conservation, biotechnology has brought forth numerous solutions. These include the breakdown of inorganic and organic pollutants, waste treatment, industrial waste processing, and the use of microorganisms to address oil spills and incidents of oil contamination.
Vietnam can focus on developing various aspects within the biotechnology sector, such as agricultural advancements in crop and animal breeding, manufacturing veterinary drugs, developing vaccines, and creating bio-fertilizers.
- Like
- Digg
- Del
- Tumblr
- VKontakte
- Buffer
- Love This
- Odnoklassniki
- Meneame
- Blogger
- Amazon
- Yahoo Mail
- Gmail
- AOL
- Newsvine
- HackerNews
- Evernote
- MySpace
- Mail.ru
- Viadeo
- Line
- Comments
- Yummly
- SMS
- Viber
- Telegram
- Subscribe
- Skype
- Facebook Messenger
- Kakao
- LiveJournal
- Yammer
- Edgar
- Fintel
- Mix
- Instapaper
- Copy Link
The agricultural sector continues to experience technological advancements. Artificial Intelligence (AI) has become a part of the modern agricultural industry. AI technology is used in various aspects, from production and management to marketing. Agriculture heavily relies on weather, soil, and the environment. Therefore, AI technology related to drones and sensors is essential to support precision agriculture
Drones’ ability to rapidly scan areas with high-quality sensors is beneficial in various applications, including crop mapping, soil analysis, environmental surveys, livestock monitoring, and infrastructure surveillance.
In light of this, the Food Crops Research Centre (PRTP) of the Agriculture and Food Research Organisation (ORPP) under the National Research and Innovation Agency (BRIN) held an occasion regarding AI technology in the development of drones and sensors and its applications in agriculture.
Puji Lestari, the Head of ORPP BRIN, expressed that this occasion would benefit BRIN and other stakeholders. She emphasised that combining drone and sensor technology would create innovative solutions to address food availability challenges.
Furthermore, Puji also highlighted that precision agriculture is closely tied to the availability of tools. Implementing AI in rapid data analysis as a basis for decision-making, ranging from planting and feeding to irrigation and harvesting, is expected to benefit farmers.
The AI-based capabilities, including high-quality sensors and scanning, enable rapid work and real-time data processing, plant identification, and decision-making to support productivity targets. Therefore, the Food Crops Research Centre should provide more opportunities to utilise AI-based technology that supports increased crop productivity,” he emphasised.
At the same time, the Head of PRTP BRIN, Yudhistira Nugraha, also acknowledged that technological advancements have become inevitable. Through the science community, AI researchers are expected to actively contribute to utilising AI technology, turning it into a valuable science that can be applied to agricultural development in Indonesia.
“We can gain many benefits using AI technology for monitoring agricultural land, including fertiliser usage, fertility identification, plant growth, and with the help of AI technology, farmers can make decisions and take actions that can be applied in the farming system to increase productivity,” he explained.
Tri Surya Harapan, Research Manager at a company that provides sales of drones and surveillance services for agriculture, the environment, defence, forestry, and marine purposes, explained about multispectral cameras that provide information on plant health and management.
“AI is widely known for replicating human intelligence and can be simulated using computer systems. Automation sensors embedded in drones, such as camera sensors, LIDAR sensors, or other advanced sensors, provide valuable information as decision-makers in the field without direct human intervention,” he said.
“The use of AI with drone and sensor technology requires relatively high service costs, so in its implementation, collaboration with stakeholders on a large scale is needed,” Tri clarified.
Meanwhile, Senior Researcher at PRTP BRIN, Muhammad Aqil, discussed the Utilisation of Drone Technology in Food Crop Research. This is in line with the direction of the President of Indonesia in the 2021 National IPTEK Coordination Meeting, which emphasises the use of modern technology and contribution to the era of Industry 4.0, including the application of artificial intelligence technology to support all fields/activities, including agriculture.
“We have gone through several stages before reaching Industry 4.0, and now it’s time to use drone technology to monitor the nutrient status of plants, quickly detect pest attacks (OPT – Plant Pest Organisms), check strain contamination, inspect seed production data cells, and determine the harvest time,” said Aqil.
Aqil concluded that the vegetation index-based model developed for the selection of corn genotypes, which are tolerant to both NDVI and NDRE, has proven capable of predicting harvest yields and the best genotype types in corn variety selection in the field.
“By integrating drones and image analysis, it could support research activities, especially in the field,” Aqil added.