Close this search box.

We are creating some awesome events for you. Kindly bear with us.

CUHK Develops Ultra-Thin Self-Powered Wireless Sensing E-Sticker

Image Credits: CUHK, Press Release

A research team of the Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong (CUHK) has recently developed a self-powered wireless sensing e-sticker (SWISE).

SWISE can convert the energy of the finger touch on the e-sticker into electromagnetic wave signals for wireless transmission without batteries or wires. Taking advantage of flexible, ultra-thin, and long effective transmission distance, SWISE can further the development of smart sensing and remote-control technologies. The findings have been published in the internationally renowned journal Science Advances, and the research team will cooperate with tech companies to bring related smart products to market.

In addition, the team has invented a novel triboelectric nanogenerator (TENG) the power output of which is far beyond that of the existing TENG. This invention may pave the way for using TENG to power home electrical appliances and offer an alternative renewable energy option.

Wireless sensing e-sticker

The development of the Internet of Things (IoT) is the key to building a smart city, in which sensors act as eyes and ears of the IoT system. These sensors are responsible for collecting physical variables such as temperature, pressure, speed, and convert them into electronic signals for analysis. Some researchers predicted that there will be billions of sensor nodes connected to the IoT in the next few years forming a physical information sensing network.

However, traditional wireless sensing and transmission technology still require multiple independent modules for sensing, signal modulation, transmission, and power source and management, which make the whole system bulky and rigid, with high power consumption and pricy too. This undoubtedly limits the application scenarios of wireless sensing technology and increases maintenance costs and difficulties.

The research team led by Professor Zi Yunlong, Assistant Professor of the Department of Mechanical and Automation Engineering at CUHK, has designed a smart material-based e-sticker SWISE, combining the four functional modules of traditional wireless sensing systems into a single unit.

SWISE is a soft and flexible electronic film (the thinnest is only 95 μm, which is less than the width of two human hairs), which generates displacement current during the discharge process to achieve self-powered wireless sensing based on the triboelectric nanogenerator (TENG) technology.

SWISE has three layers, where the middle one is a metal film with two electrodes, and the outside is composed of a tribo-charge layer and a substrate layer. When the finger slides on the tribo-charge layers of SWISE to generate tribo-charges, a discharge effect will be generated, which converts the kinetic energy of the finger movement into electromagnetic signals. The research team has proved that the signal can travel long distances (up to 30 metres) without an external power supply.

Multi-point sensing ability, which can be achieved by distinguishing the signals generated from different design parameters, allows sensors to be widely applied in different scenarios in a smart city. Thus, the research team has designed devices with varied parameters, for instance, by changing the inductance of the device, so that SWISE can generate signals with different characteristics and spectrums, which expands its application fields.

The wireless soft keyboard and wristband shown in videos 1 and 2 can transmit four different signals 1, 2, 3, and 4, respectively. SWISE is also expected to be used in smart clothes, robotics, medical treatment, human-machine interfaces, body area sensor networks, and virtual reality in the future.

In addition, the research team is exploring the potential of SWISE for gas detection. They found that spectrums of the electromagnetic signal generated by the displacement current will be slightly varied when the gas composition between the two electrodes of the metal film is changed.

Through artificial intelligence (AI) and deep learning technologies, they successfully distinguished the signal characteristics of ten different gas composition and concentration combinations (including argon, carbon dioxide, helium, nitrogen and general air), with 98.5% recognition accuracy.

The team repeatedly tested the SWISE sensing system and its applications, such as wireless soft keyboards and smart wristbands. The results fully proved that it has huge application potential in wireless sensing and remote control. It is expected to further the evolution of smart sensing and remote-control technologies and the development of the smart city in Hong Kong.

This project was funded by the HKSAR Government’s Research Grants Council Early Career Scheme, General Research Fund, HKSAR Innovation and Technology Fund, and Tencent University Relations Programme.

Novel triboelectric nanogenerator with high power output

TENG empowers SWISE to generate displacement current during the discharge process to achieve self-powered wireless sensing. Not only a finger touch can generate power by TENG. Mechanical motions in the environment, such as water waves, wind, rain droplets, and biomechanical motions can also be harvested by TENG to produce clean and renewable energy. However, TENG suffers from two fundamental limitations: the low charge transfer and the high output impedance, which result in low output power and limited application.

Recently, Professor Zi and his team have developed an opposite-charge-enhanced transistor-like triboelectric nanogenerator (OCT-TENG) that is capable of delivering instantaneous power density over 10 MW/m2 at a low frequency of about 1 Hz, far beyond the previous reports.

For demonstrating the high performance of this new invention, the team lit up a 180 W commercial lamp using an OCT-TENG device, as well as a vehicle LED bulb rated 30 W being wirelessly powered. These results set a record for the high-power output of TENG. The related output was published in the prestigious journal of Nature Communications.


Qlik’s vision is a data-literate world, where everyone can use data and analytics to improve decision-making and solve their most challenging problems. A private company, Qlik offers real-time data integration and analytics solutions, powered by Qlik Cloud, to close the gaps between data, insights and action. By transforming data into Active Intelligence, businesses can drive better decisions, improve revenue and profitability, and optimize customer relationships. Qlik serves more than 38,000 active customers in over 100 countries.


As a Titanium Black Partner of Dell Technologies, CTC Global Singapore boasts unparalleled access to resources.

Established in 1972, we bring 52 years of experience to the table, solidifying our position as a leading IT solutions provider in Singapore. With over 300 qualified IT professionals, we are dedicated to delivering integrated solutions that empower your organization in key areas such as Automation & AI, Cyber Security, App Modernization & Data Analytics, Enterprise Cloud Infrastructure, Workplace Modernization and Professional Services.

Renowned for our consulting expertise and delivering expert IT solutions, CTC Global Singapore has become the preferred IT outsourcing partner for businesses across Singapore.


Planview has one mission: to build the future of connected work. Our solutions enable organizations to connect the business from ideas to impact, empowering companies to accelerate the achievement of what matters most. Planview’s full spectrum of Portfolio Management and Work Management solutions creates an organizational focus on the strategic outcomes that matter and empowers teams to deliver their best work, no matter how they work. The comprehensive Planview platform and enterprise success model enables customers to deliver innovative, competitive products, services, and customer experiences. Headquartered in Austin, Texas, with locations around the world, Planview has more than 1,300 employees supporting 4,500 customers and 2.6 million users worldwide. For more information, visit


SIRIM is a premier industrial research and technology organisation in Malaysia, wholly-owned by the Minister​ of Finance Incorporated. With over forty years of experience and expertise, SIRIM is mandated as the machinery for research and technology development, and the national champion of quality. SIRIM has always played a major role in the development of the country’s private sector. By tapping into our expertise and knowledge base, we focus on developing new technologies and improvements in the manufacturing, technology and services sectors. We nurture Small Medium Enterprises (SME) growth with solutions for technology penetration and upgrading, making it an ideal technology partner for SMEs.


HashiCorp provides infrastructure automation software for multi-cloud environments, enabling enterprises to unlock a common cloud operating model to provision, secure, connect, and run any application on any infrastructure. HashiCorp tools allow organizations to deliver applications faster by helping enterprises transition from manual processes and ITIL practices to self-service automation and DevOps practices. 


IBM is a leading global hybrid cloud and AI, and consulting services provider, helping clients in more than 175 countries capitalize on insights from their data, streamline business processes, reduce costs and gain the competitive edge in their industries. Nearly 3,800 government and corporate entities in critical infrastructure areas such as financial services, telecommunications and healthcare rely on IBM’s hybrid cloud platform and Red Hat OpenShift to affect their digital transformations quickly, efficiently, and securely. IBM’s breakthrough innovations in AI, quantum computing, industry-specific cloud solutions and business services deliver open and flexible options to our clients. All of this is backed by IBM’s legendary commitment to trust, transparency, responsibility, inclusivity, and service. For more information, visit