Taiwan City Science Lab @ Taipei Tech demonstrated a series of cutting-edge AI applications. The lab exhibit advanced AI applications and their research and development results, such as the mobile robot, a AI robotic fish and Campus Rover.
The cross-disciplinary R&D and teaching laboratory aims to be a global technology and talent exchange platform. Massachusetts Institute of Technology (MIT) and Taipei Tech are coming together to jointly established City Science Lab @ Taipei Tech.
“Through developing advanced AI technology and big data system, we plan to make Taiwan the island of high-end technology,” said Yao Leehter, Taipei Tech Chair Professor of the Department of Electrical Engineering.
Yao indicated that Taipei Tech alums highly support the lab. The lab also collaborates with Kent Larson, the leader of MIT City Science Lab, the City Science Lab @ Taipei Tech aims to be an international platform for technology and talent exchange.
Taipei Tech adopts and jointly promotes with MIT to implement the Undergraduate Scientific Research Programme. Known as UROP, the programme provides sufficient resources for students and cultivates a new generation of scientific researchers. The collaboration was initially rolled out in 1969 by MIT’s first President, William Rogers.
For students to learn the most modern and state-of-the-art technology applications, the lab provides advanced equipment for R&D purposes, such as mobile robots. The agile, mobile robot can adapt to complex terrains and is equipped with LIDAR, infrared, and stereo vision sensors, which can draw 3D point cloud maps in real-time and detect and dodge obstacles. The mobile robot is used in decommissioned nuclear power plants, factories, construction sites, and offshore drilling oil platforms. Another mobile robot use case is for patrol, troubleshooting, and leak detection.
In addition, the lab also showcased its R&D results which are the AI robotic fish to the advanced instrumental equipment. The robotic fish is a streamlined robot designed to resemble a real fish. The fish robot comprehends and mimics the motion model of swimming fish through machine learning.
The robot can swim underwater in a simulated way. To perfectly mimic the fish movement, researchers have spent significant time collecting massive movement data from real fish, documenting, and analysing the swimming performance. Afterwards, they utilised AI technology and programme coding to control the motoric movement of the robotic fish.
The team then spent a year adjusting the robotic fish to make the swim movement look like a real fish. Machinery fish propulsion efficiency and excellent swimming performance are considered one of the most critical subjects in bionics.
“The robotic fish is useful for biological research and can also be used to carry out underwater operations and examine water quality,” said Yao.
Recently, the fish robot was involved in movie production. During the designing process, the production house team suggested adding a “cloth” on the fish with fish skin and fish scale to make it more lifelike. The company also came up with the idea to use a magnet to stick the fish scale on the body of the robotic fish. Taiwan Textile Research Institute and the local design research group joined the brainstorming and production process to finish the golden fish’s final look onscreen.
Moreover, The Campus Rover, developed by the team of Professor Yao in cooperation with the Taipei Tech Department of Industrial Design, demonstrated practical AI applications in real life. For example, campus or express hospital service can use the self-charging robot to ensure delivery safety.