We are creating some awesome events for you. Kindly bear with us.

Four CityU Projects Awarded $20 Million From Green Tech Fund

Four research projects led by scholars at City University of Hong Kong (CityU) received grants worth HK$20.26 million in total from the inaugural Green Tech Fund under the Environmental Protection Department, Hong Kong SAR Government.

Established with an allocation of HK$200 million from the Government’s 2020/21 budget, Green Tech Fund aims to boost the research into and development and applications of decarbonisation and green technologies. Addressing issues on decarbonisation, energy efficiency, green transport and air quality, CityU joined with local industries and government departments to expedite low-carbon transformation in Hong Kong.

The project led by Chair Professor of Electrical Engineering received funding worth approximately HK$6.69 million. The objective is to develop a smart power conditioner (SPC) by reusing obsolete electric vehicle (EV) batteries, termed second-life batteries. The overall aim is to improve the power quality and energy efficiency within the electrical distribution network and meet the growing demand for charging EVs.

With an artificial intelligence (AI)-empowered diagnostic framework, the SPC system can estimate the remaining useful life of batteries and the health condition of major power components in the SPC through online monitoring. In addition, the system can help reduce electronic waste by controlling the charging and discharging profiles of the batteries to prolong their life. It can also reduce the power loss of the entire electric distribution network, and solve the frequent failure problems experienced by the power capacitor in the passive harmonic filter and capacitor bank.

A grant of approximately HK$ 5.69 million was awarded to the project led by the Dean and Chair Professor of Atmospheric Environment in the School of Energy and Environment (SEE). The research team will develop two types of portable low-cost sensors for the real-time monitoring of volatile organic compounds (VOCs) in the air. Poisonous VOCs are key precursors of the ozone and suspended particulates that generate photochemical smog.

The two sensing systems that the team plans to develop will be mini metal-organic framework-based photoionisation detector sensors and metal oxide semiconductor sensors; and a portable thermal desorption-gas chromatograph-photoionisation detector system. These systems, which entail lower production costs than existing commercial monitoring devices, will help Hong Kong achieve decarbonisation targets and enhance air quality by controlling the emission of VOCs. In addition, they can be easily installed and are flexible enough for various mobile platforms that monitor VOCs at different horizontal and vertical scales.

The project led by the Director of Hong Kong Institute for Clean Energy and the Professor of Materials Science received funding worth HK$5.03 million. His team will develop highly efficient printable perovskite solar cells (PSCs) to help Hong Kong become a leading city in developing technologies for solar energy.

By developing perovskite as appropriate “ink” for printing films directly on crystalline silicon solar cells, the team aims to produce high-performance perovskite/crystalline silicon tandem solar cells that have 30% higher power conversion efficiency than conventional silicon cells. This technology can enhance the efficiency of photovoltaic systems installed on rooftops. In addition, the team will develop semi-transparent PSCs that can be used as solar windows for building-integrated photovoltaics.

The team consists of top perovskite scientists and experts in printable PSCs. It was noted, currently, more than 85% of energy in the world comes from non-renewable sources. Scientists should therefore bear the responsibility of developing new materials and technologies that will provide highly efficient and sustainable clean energy.

The Associate Professor of SEE was granted approximately HK$2.88 million for his project. Given the prevalent trend for developing green energy through the use of solar energy and water to generate hydrogen, the research team will develop a novel and large-scale photocatalyst panel for solar hydrogen evolution using water from various sources.

The team will put bismuth-based photocatalytic powder developed by Dr Ng on stainless steel plates with a transparent window as an outer frame for receiving sunlight. A thin layer of water (less than 1 cm) will be filled within the photocatalyst panels to generate hydrogen. The clean hydrogen produced by sunlight and water can generate electricity for small indoor devices.

Send this to a friend