We are creating some awesome events for you. Kindly bear with us.

Ultra-Efficient Tech to Forge Sustainable Energy Future

Researchers from The Australian National University (ANU) have developed a system to transport data using atomically thin semiconductors in an extremely energy-efficient way. The breakthrough could one day help power next-gen computers and smartphones that consume less electricity than current devices.

This new and vastly improved level of energy efficiency is achieved by mixing excitons – electrons bound with electron holes – with light in one-atom thin semiconductors, which are about 100,000 times thinner than a sheet of paper. An energy-saving semiconductor technology, it has shown highly promising signs of requiring less electricity to run by not giving off any heat, meaning no energy is wasted.

The ANU team is the first to successfully demonstrate this efficient transportation of information carriers – particles that can transport data in computers – in these atomically thin semiconductors at room temperature, which is a necessary first step in creating the computers and smartphones of tomorrow. The team hopes the technology could pave the way for sustainable growth in computing by reducing wasted energy consumption, which is a challenge facing scientists around the world.

PhD scholar Matthias Wurdack, from the ANU Research School of Physics, said that computers already use around 10 per cent of all globally available electricity, a number which comes with a massive financial and environmental cost, and is predicted to double every 10 years due to the increasing demand for computing.

Estimates show that computing devices, the Internet, data centres and other digital technologies account for at least two per cent of global greenhouse gas emissions, which is similar to the aviation industry pre-COVID.

Mr Wurdack, who is the lead author of the research, said this new development addresses the heating problem that drives electricity consumption in thousands of massive, factory-sized data centres around the world. He noted that a huge amount of the energy used by computers is wasted because the electricity used to power it heats up the device as it performs its tasks.

ANU researchers hope a move towards new energy-efficient information technologies and a potential reduction in global energy consumption would in turn reduce the number of harmful emissions released into the atmosphere.

Since producing, storing, and supplying energy always comes with a cost, including air pollution and climate change as a result of burning fossil fuels, it is extremely important to reduce electricity usage for a more sustainable future.

Corresponding author and ANU Professor Elena Ostrovskaya, who is also the Chief Investigator at the ARC Centre of Excellence in Future Low-Energy Electronics Technologies (FLEET), said this study is part of the global effort to develop low-energy semiconductor technologies for computing and information processing.

There are many other options for future research, including the development of energy-efficient sensors and lasers based on this semiconductor technology, Professor Ostrovskaya said. The next stage of the research is to incorporate the technology into a transistor – the building blocks of computers. The paper is published in Nature Communications and features authors from Germany, Poland and Australia, including seven researchers from ANU. The research has been peer-reviewed.

The global semiconductor market size was valued at US$425.96 billion in 2020. The regional impact of COVID-19 has been unprecedented and staggering, with semiconductors witnessing a positive demand across the regions amid the pandemic. Analysis shows that the market exhibited a modest growth of 3.3% in 2020 as compared to the average year-on-year growth during 2017-2019. The market is projected to grow from US$452.25 billion in 2021 to US$803.15 billion in 2028 at a CAGR of 8.6% in the 2021-2028 period. The sudden fall in CAGR is attributable to this market’s demand and growth returning to pre-pandemic levels once the pandemic is over.

Send this to a friend